Mercurial > ift6266
view code_tutoriel/mlp.py @ 108:a7cd8dd3221c
pipeline.py: placé les modules dans le bon ordre + store NIST en bytes plutôt qu'en float32 dans la RAM
author | boulanni <nicolas_boulanger@hotmail.com> |
---|---|
date | Mon, 15 Feb 2010 16:17:48 -0500 |
parents | 827de2cc34f8 |
children | 4bc5eeec6394 |
line wrap: on
line source
""" This tutorial introduces the multilayer perceptron using Theano. A multilayer perceptron is a logistic regressor where instead of feeding the input to the logistic regression you insert a intermidiate layer, called the hidden layer, that has a nonlinear activation function (usually tanh or sigmoid) . One can use many such hidden layers making the architecture deep. The tutorial will also tackle the problem of MNIST digit classification. .. math:: f(x) = G( b^{(2)} + W^{(2)}( s( b^{(1)} + W^{(1)} x))), References: - textbooks: "Pattern Recognition and Machine Learning" - Christopher M. Bishop, section 5 TODO: recommended preprocessing, lr ranges, regularization ranges (explain to do lr first, then add regularization) """ __docformat__ = 'restructedtext en' import numpy, cPickle, gzip import theano import theano.tensor as T import time import theano.tensor.nnet class MLP(object): """Multi-Layer Perceptron Class A multilayer perceptron is a feedforward artificial neural network model that has one layer or more of hidden units and nonlinear activations. Intermidiate layers usually have as activation function thanh or the sigmoid function while the top layer is a softamx layer. """ def __init__(self, input, n_in, n_hidden, n_out): """Initialize the parameters for the multilayer perceptron :param input: symbolic variable that describes the input of the architecture (one minibatch) :param n_in: number of input units, the dimension of the space in which the datapoints lie :param n_hidden: number of hidden units :param n_out: number of output units, the dimension of the space in which the labels lie """ # initialize the parameters theta = (W1,b1,W2,b2) ; note that this # example contains only one hidden layer, but one can have as many # layers as he/she wishes, making the network deeper. The only # problem making the network deep this way is during learning, # backpropagation being unable to move the network from the starting # point towards; this is where pre-training helps, giving a good # starting point for backpropagation, but more about this in the # other tutorials # `W1` is initialized with `W1_values` which is uniformely sampled # from -6./sqrt(n_in+n_hidden) and 6./sqrt(n_in+n_hidden) # the output of uniform if converted using asarray to dtype # theano.config.floatX so that the code is runable on GPU W1_values = numpy.asarray( numpy.random.uniform( \ low = -numpy.sqrt(6./(n_in+n_hidden)), \ high = numpy.sqrt(6./(n_in+n_hidden)), \ size = (n_in, n_hidden)), dtype = theano.config.floatX) # `W2` is initialized with `W2_values` which is uniformely sampled # from -6./sqrt(n_hidden+n_out) and 6./sqrt(n_hidden+n_out) # the output of uniform if converted using asarray to dtype # theano.config.floatX so that the code is runable on GPU W2_values = numpy.asarray( numpy.random.uniform( low = -numpy.sqrt(6./(n_hidden+n_out)), \ high= numpy.sqrt(6./(n_hidden+n_out)),\ size= (n_hidden, n_out)), dtype = theano.config.floatX) self.W1 = theano.shared( value = W1_values ) self.b1 = theano.shared( value = numpy.zeros((n_hidden,), dtype= theano.config.floatX)) self.W2 = theano.shared( value = W2_values ) self.b2 = theano.shared( value = numpy.zeros((n_out,), dtype= theano.config.floatX)) # symbolic expression computing the values of the hidden layer self.hidden = T.tanh(T.dot(input, self.W1)+ self.b1) # symbolic expression computing the values of the top layer self.p_y_given_x= T.nnet.softmax(T.dot(self.hidden, self.W2)+self.b2) # compute prediction as class whose probability is maximal in # symbolic form self.y_pred = T.argmax( self.p_y_given_x, axis =1) # L1 norm ; one regularization option is to enforce L1 norm to # be small self.L1 = abs(self.W1).sum() + abs(self.W2).sum() # square of L2 norm ; one regularization option is to enforce # square of L2 norm to be small self.L2_sqr = (self.W1**2).sum() + (self.W2**2).sum() def negative_log_likelihood(self, y): """Return the mean of the negative log-likelihood of the prediction of this model under a given target distribution. .. math:: \frac{1}{|\mathcal{D}|}\mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = \frac{1}{|\mathcal{D}|}\sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ \ell (\theta=\{W,b\}, \mathcal{D}) :param y: corresponds to a vector that gives for each example the :correct label """ return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) def errors(self, y): """Return a float representing the number of errors in the minibatch over the total number of examples of the minibatch """ # check if y has same dimension of y_pred if y.ndim != self.y_pred.ndim: raise TypeError('y should have the same shape as self.y_pred', ('y', target.type, 'y_pred', self.y_pred.type)) # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError() def sgd_optimization_mnist( learning_rate=0.01, L1_reg = 0.00, \ L2_reg = 0.0001, n_iter=100): """ Demonstrate stochastic gradient descent optimization for a multilayer perceptron This is demonstrated on MNIST. :param learning_rate: learning rate used (factor for the stochastic gradient :param L1_reg: L1-norm's weight when added to the cost (see regularization) :param L2_reg: L2-norm's weight when added to the cost (see regularization) :param n_iter: maximal number of iterations ot run the optimizer """ # Load the dataset f = gzip.open('mnist.pkl.gz','rb') train_set, valid_set, test_set = cPickle.load(f) f.close() # make minibatches of size 20 batch_size = 20 # sized of the minibatch # Dealing with the training set # get the list of training images (x) and their labels (y) (train_set_x, train_set_y) = train_set # initialize the list of training minibatches with empty list train_batches = [] for i in xrange(0, len(train_set_x), batch_size): # add to the list of minibatches the minibatch starting at # position i, ending at position i+batch_size # a minibatch is a pair ; the first element of the pair is a list # of datapoints, the second element is the list of corresponding # labels train_batches = train_batches + \ [(train_set_x[i:i+batch_size], train_set_y[i:i+batch_size])] # Dealing with the validation set (valid_set_x, valid_set_y) = valid_set # initialize the list of validation minibatches valid_batches = [] for i in xrange(0, len(valid_set_x), batch_size): valid_batches = valid_batches + \ [(valid_set_x[i:i+batch_size], valid_set_y[i:i+batch_size])] # Dealing with the testing set (test_set_x, test_set_y) = test_set # initialize the list of testing minibatches test_batches = [] for i in xrange(0, len(test_set_x), batch_size): test_batches = test_batches + \ [(test_set_x[i:i+batch_size], test_set_y[i:i+batch_size])] ishape = (28,28) # this is the size of MNIST images # allocate symbolic variables for the data x = T.fmatrix() # the data is presented as rasterized images y = T.lvector() # the labels are presented as 1D vector of # [long int] labels # construct the logistic regression class classifier = MLP( input=x.reshape((batch_size,28*28)),\ n_in=28*28, n_hidden = 500, n_out=10) # the cost we minimize during training is the negative log likelihood of # the model plus the regularization terms (L1 and L2); cost is expressed # here symbolically cost = classifier.negative_log_likelihood(y) \ + L1_reg * classifier.L1 \ + L2_reg * classifier.L2_sqr # compiling a theano function that computes the mistakes that are made by # the model on a minibatch test_model = theano.function([x,y], classifier.errors(y)) # compute the gradient of cost with respect to theta = (W1, b1, W2, b2) g_W1 = T.grad(cost, classifier.W1) g_b1 = T.grad(cost, classifier.b1) g_W2 = T.grad(cost, classifier.W2) g_b2 = T.grad(cost, classifier.b2) # specify how to update the parameters of the model as a dictionary updates = \ { classifier.W1: classifier.W1 - learning_rate*g_W1 \ , classifier.b1: classifier.b1 - learning_rate*g_b1 \ , classifier.W2: classifier.W2 - learning_rate*g_W2 \ , classifier.b2: classifier.b2 - learning_rate*g_b2 } # compiling a theano function `train_model` that returns the cost, but in # the same time updates the parameter of the model based on the rules # defined in `updates` train_model = theano.function([x, y], cost, updates = updates ) n_minibatches = len(train_batches) # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = n_minibatches # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = float('inf') best_iter = 0 test_score = 0. start_time = time.clock() # have a maximum of `n_iter` iterations through the entire dataset for iter in xrange(n_iter* n_minibatches): # get epoch and minibatch index epoch = iter / n_minibatches minibatch_index = iter % n_minibatches # get the minibatches corresponding to `iter` modulo # `len(train_batches)` x,y = train_batches[ minibatch_index ] cost_ij = train_model(x,y) if (iter+1) % validation_frequency == 0: # compute zero-one loss on validation set this_validation_loss = 0. for x,y in valid_batches: # sum up the errors for each minibatch this_validation_loss += test_model(x,y) # get the average by dividing with the number of minibatches this_validation_loss /= len(valid_batches) print('epoch %i, minibatch %i/%i, validation error %f %%' % \ (epoch, minibatch_index+1, n_minibatches, \ this_validation_loss*100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold : patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_score = 0. for x,y in test_batches: test_score += test_model(x,y) test_score /= len(test_batches) print((' epoch %i, minibatch %i/%i, test error of best ' 'model %f %%') % (epoch, minibatch_index+1, n_minibatches, test_score*100.)) if patience <= iter : break end_time = time.clock() print(('Optimization complete. Best validation score of %f %% ' 'obtained at iteration %i, with test performance %f %%') % (best_validation_loss * 100., best_iter, test_score*100.)) print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) if __name__ == '__main__': sgd_optimization_mnist()