Mercurial > ift6266
view scripts/stacked_dae/sgd_optimization.py @ 133:a4e5128ef2cb
Adapted ttf2jpg to get fonts in /Tmp/allfonts local folder
author | boulanni <nicolas_boulanger@hotmail.com> |
---|---|
date | Sat, 20 Feb 2010 02:07:29 -0500 |
parents | 5c79a2557f2f |
children | 7d8366fb90bf |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 # Generic SdA optimization loop, adapted slightly from the deeplearning.net tutorial import numpy import theano import time import theano.tensor as T from jobman import DD from stacked_dae import SdA def sgd_optimization(dataset, hyperparameters, n_ins, n_outs): hp = hyperparameters printout_frequency = 1000 train_set, valid_set, test_set = dataset def shared_dataset(data_xy): data_x, data_y = data_xy shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) return shared_x, T.cast(shared_y, 'int32') test_set_x, test_set_y = shared_dataset(test_set) valid_set_x, valid_set_y = shared_dataset(valid_set) train_set_x, train_set_y = shared_dataset(train_set) # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.value.shape[0] / hp.minibatch_size n_valid_batches = valid_set_x.value.shape[0] / hp.minibatch_size n_test_batches = test_set_x.value.shape[0] / hp.minibatch_size # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # construct the stacked denoising autoencoder class classifier = SdA( train_set_x=train_set_x, train_set_y = train_set_y,\ batch_size = hp.minibatch_size, n_ins= n_ins, \ hidden_layers_sizes = hp.hidden_layers_sizes, n_outs=10, \ corruption_levels = hp.corruption_levels,\ rng = numpy.random.RandomState(1234),\ pretrain_lr = hp.pretraining_lr, finetune_lr = hp.finetuning_lr ) printout_acc = 0.0 start_time = time.clock() ## Pre-train layer-wise for i in xrange(classifier.n_layers): # go through pretraining epochs for epoch in xrange(hp.pretraining_epochs_per_layer): # go through the training set for batch_index in xrange(n_train_batches): c = classifier.pretrain_functions[i](batch_index) print c printout_acc += c / printout_frequency if (batch_index+1) % printout_frequency == 0: print batch_index, "reconstruction cost avg=", printout_acc printout_acc = 0.0 print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c end_time = time.clock() print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) # Fine-tune the entire model minibatch_size = hp.minibatch_size # create a function to compute the mistakes that are made by the model # on the validation set, or testing set test_model = theano.function([index], classifier.errors, givens = { classifier.x: test_set_x[index*minibatch_size:(index+1)*minibatch_size], classifier.y: test_set_y[index*minibatch_size:(index+1)*minibatch_size]}) validate_model = theano.function([index], classifier.errors, givens = { classifier.x: valid_set_x[index*minibatch_size:(index+1)*minibatch_size], classifier.y: valid_set_y[index*minibatch_size:(index+1)*minibatch_size]}) # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2. # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience/2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = float('inf') test_score = 0. start_time = time.clock() done_looping = False epoch = 0 printout_acc = 0.0 print "----- START FINETUNING -----" while (epoch < hp.max_finetuning_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): cost_ij = classifier.finetune(minibatch_index) iter = epoch * n_train_batches + minibatch_index printout_acc += cost_ij / float(printout_frequency * minibatch_size) if (iter+1) % printout_frequency == 0: print iter, "cost avg=", printout_acc printout_acc = 0.0 if (iter+1) % validation_frequency == 0: validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % \ (epoch, minibatch_index+1, n_train_batches, \ this_validation_loss*100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold : patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [test_model(i) for i in xrange(n_test_batches)] test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of best ' 'model %f %%') % (epoch, minibatch_index+1, n_train_batches, test_score*100.)) if patience <= iter : done_looping = True break end_time = time.clock() print(('Optimization complete with best validation score of %f %%,' 'with test performance %f %%') % (best_validation_loss * 100., test_score*100.)) print ('The code ran for %f minutes' % ((end_time-start_time)/60.))