Mercurial > ift6266
view deep/crbm/mnist_config.py.example @ 406:a11274742088
Add bibliography style files.
author | Arnaud Bergeron <abergeron@gmail.com> |
---|---|
date | Wed, 28 Apr 2010 14:28:32 -0400 |
parents | 64fa85d68923 |
children | 1e9788ce1680 |
line wrap: on
line source
# ---------------------------------------------------------------------------- # BEGIN EXPERIMENT ISOLATION CODE # Path to pass to jobman sqlschedule. IMPORTANT TO CHANGE TO REFLECT YOUR CLONE. # Make sure this is accessible from the default $PYTHONPATH (in your .bashrc) # (and make sure every subdirectory has its __init__.py file) EXPERIMENT_PATH = "ift6266_mnistcrbm_exp1.ift6266.deep.crbm.mnist_crbm.jobman_entrypoint" def isolate_experiment(): ''' This makes sure we use the codebase clone created for this experiment. I.e. if you want to make modifications to the codebase but don't want your running experiment code to be impacted by those changes, first copy the codebase somewhere, and configure this section. It will make sure we import from the right place. MUST BE DONE BEFORE IMPORTING ANYTHING ELSE (Leave this comment there so others will understand what's going on) ''' # Place where you copied modules that should be frozen for this experiment codebase_clone_path = "/u/savardf/ift6266/experiment_clones/ift6266_mnistcrbm_exp1" # Places where there might be conflicting modules from your $PYTHONPATH remove_these_from_pythonpath = ["/u/savardf/ift6266/dev_code"] import sys sys.path[0:0] = [codebase_clone_path] # remove paths we specifically don't want in $PYTHONPATH for bad_path in remove_these_from_pythonpath: sys.path[:] = [el for el in sys.path if not el in (bad_path, bad_path+"/")] # Make the imports import ift6266 # Just making sure we're importing from the right place modules_to_check = [ift6266] for module in modules_to_check: if not codebase_clone_path in module.__path__[0]: raise RuntimeError("Module loaded from incorrect path "+module.__path__[0]) # END EXPERIMENT ISOLATION CODE # ---------------------------------------------------------------------------- from jobman import DD ''' These are parameters used by mnist_crbm.py. They'll end up as globals in there. Rename this file to config.py and configure as needed. DON'T add the renamed file to the repository, as others might use it without realizing it, with dire consequences. ''' # change "sandbox" when you're ready JOBDB = 'postgres://ift6266h10@gershwin/ift6266h10_sandbox_db/yourtablenamehere' # Set this to True when you want to run cluster tests, ie. you want # to run on the cluster, many jobs, but want to reduce the training # set size and the number of epochs, so you know everything runs # fine on the cluster. # Set this PRIOR to inserting your test jobs in the DB. TEST_CONFIG = False # save params at training end SAVE_PARAMS = True IMAGE_OUTPUT_DIR = 'img/' # number of minibatches before taking means for valid error etc. REDUCE_EVERY = 100 # print series to stdout too (otherwise just produce the HDF5 file) SERIES_STDOUT_TOO = False VISUALIZE_EVERY = 20000 GIBBS_STEPS_IN_VIZ_CHAIN = 1000 if TEST_CONFIG: REDUCE_EVERY = 10 VISUALIZE_EVERY = 20 # This is to configure insertion of jobs on the cluster. # Possible values the hyperparameters can take. These are then # combined with produit_cartesien_jobs so we get a list of all # possible combinations, each one resulting in a job inserted # in the jobman DB. JOB_VALS = {'learning_rate': [1.0, 0.1, 0.01], 'sparsity_lambda': [3.0,0.5], 'sparsity_p': [0.3,0.05], 'num_filters': [40,15], 'filter_size': [12,7], 'minibatch_size': [20], 'num_epochs': [20]} # Just useful for tests... minimal number of epochs # Useful when launching a single local job DEFAULT_STATE = DD({'learning_rate': 0.1, 'sparsity_lambda': 1.0, 'sparsity_p': 0.05, 'num_filters': 40, 'filter_size': 12, 'minibatch_size': 10, 'num_epochs': 20}) # To reinsert duplicate of jobs that crashed REINSERT_COLS = ['learning_rate','sparsity_lambda','sparsity_p','num_filters','filter_size','minibatch_size','dupe'] #REINSERT_JOB_VALS = [\ # [,2],]