view deep/stacked_dae/v_sylvain/train_error.py @ 598:a0fdc1f134da

minor changes to nips workshop submission
author Yoshua Bengio <bengioy@iro.umontreal.ca>
date Thu, 14 Oct 2010 22:09:55 -0400
parents 66b05c6077c7
children
line wrap: on
line source

#!/usr/bin/python
# coding: utf-8

import ift6266
import pylearn

import numpy 
import theano
import time
import math

import pylearn.version
import theano.tensor as T
from theano.tensor.shared_randomstreams import RandomStreams

import copy
import sys
import os
import os.path

from jobman import DD
import jobman, jobman.sql
from pylearn.io import filetensor

from utils import produit_cartesien_jobs
from copy import copy

from sgd_optimization import SdaSgdOptimizer

#from ift6266.utils.scalar_series import *
from ift6266.utils.seriestables import *
import tables

from ift6266 import datasets
from config import *

'''
Function called by jobman upon launching each job
Its path is the one given when inserting jobs: see EXPERIMENT_PATH
'''
def jobman_entrypoint(state, channel,set_choice):
    # record mercurial versions of each package
    pylearn.version.record_versions(state,[theano,ift6266,pylearn])
    # TODO: remove this, bad for number of simultaneous requests on DB
    channel.save()

    # For test runs, we don't want to use the whole dataset so
    # reduce it to fewer elements if asked to.
    rtt = None
    if state.has_key('reduce_train_to'):
        rtt = state['reduce_train_to']
    elif REDUCE_TRAIN_TO:
        rtt = REDUCE_TRAIN_TO
 
    n_ins = 32*32
    n_outs = 62 # 10 digits, 26*2 (lower, capitals)
     
    examples_per_epoch = NIST_ALL_TRAIN_SIZE

    PATH = ''
    if set_choice == 0:
        maximum_exemples=int(500000) #Maximum number of exemples seen
    else:
        maximum_exemples = int(1000000000)  #an impossible number



    print "Creating optimizer with state, ", state

    optimizer = SdaSgdOptimizer(dataset=datasets.nist_all(), 
                                    hyperparameters=state, \
                                    n_ins=n_ins, n_outs=n_outs,\
                                    examples_per_epoch=examples_per_epoch, \
                                    max_minibatches=rtt)	


    

    if os.path.exists(PATH+'params_finetune_NIST.txt'):
        print ('\n finetune = NIST ')
        optimizer.reload_parameters(PATH+'params_finetune_NIST.txt')
        print "For" + str(maximum_exemples) + "over the NIST set: "
        optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples),set_choice)
        print "For" + str(maximum_exemples) + "over the P07 set: "
        optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples),set_choice)
        print "For" + str(maximum_exemples) + "over the PNIST07 set: "
        optimizer.training_error(datasets.PNIST07(maxsize=maximum_exemples),set_choice)
        
    
    if os.path.exists(PATH+'params_finetune_P07.txt'):
        print ('\n finetune = P07 ')
        optimizer.reload_parameters(PATH+'params_finetune_P07.txt')
        print "For" + str(maximum_exemples) + "over the NIST set: "
        optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples),set_choice)
        print "For" + str(maximum_exemples) + "over the P07 set: "
        optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples),set_choice)
        print "For" + str(maximum_exemples) + "over the PNIST07 set: "
        optimizer.training_error(datasets.PNIST07(maxsize=maximum_exemples),set_choice)

    
    if os.path.exists(PATH+'params_finetune_NIST_then_P07.txt'):
        print ('\n finetune = NIST then P07')
        optimizer.reload_parameters(PATH+'params_finetune_NIST_then_P07.txt')
        print "For" + str(maximum_exemples) + "over the NIST set: "
        optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples),set_choice)
        print "For" + str(maximum_exemples) + "over the P07 set: "
        optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples),set_choice)
        print "For" + str(maximum_exemples) + "over the PNIST07 set: "
        optimizer.training_error(datasets.PNIST07(maxsize=maximum_exemples),set_choice)
    
    if os.path.exists(PATH+'params_finetune_P07_then_NIST.txt'):
        print ('\n finetune = P07 then NIST')
        optimizer.reload_parameters(PATH+'params_finetune_P07_then_NIST.txt')
        print "For" + str(maximum_exemples) + "over the NIST set: "
        optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples),set_choice)
        print "For" + str(maximum_exemples) + "over the P07 set: "
        optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples),set_choice)
        print "For" + str(maximum_exemples) + "over the PNIST07 set: "
        optimizer.training_error(datasets.PNIST07(maxsize=maximum_exemples),set_choice)
    
    if os.path.exists(PATH+'params_finetune_PNIST07.txt'):
        print ('\n finetune = PNIST07')
        optimizer.reload_parameters(PATH+'params_finetune_PNIST07.txt')
        print "For" + str(maximum_exemples) + "over the NIST set: "
        optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples),set_choice)
        print "For" + str(maximum_exemples) + "over the P07 set: "
        optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples),set_choice)
        print "For" + str(maximum_exemples) + "over the PNIST07 set: "
        optimizer.training_error(datasets.PNIST07(maxsize=maximum_exemples),set_choice)
        
    if os.path.exists(PATH+'params_finetune_PNIST07_then_NIST.txt'):
        print ('\n finetune = PNIST07 then NIST')
        optimizer.reload_parameters(PATH+'params_finetune_PNIST07_then_NIST.txt')
        print "For" + str(maximum_exemples) + "over the NIST set: "
        optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples),set_choice)
        print "For" + str(maximum_exemples) + "over the P07 set: "
        optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples),set_choice)
        print "For" + str(maximum_exemples) + "over the PNIST07 set: "
        optimizer.training_error(datasets.PNIST07(maxsize=maximum_exemples),set_choice)
    
    channel.save()

    return channel.COMPLETE



if __name__ == '__main__':
    
    args = sys.argv[1:]

    type = 0
    if len(args) > 0 and args[0] == 'train':
        type = 0
    elif len(args) > 0 and args[0] == 'valid':
        type = 1
    elif len(args) > 0 and args[0] == 'test':
        type = 2
        
    chanmock = DD({'COMPLETE':0,'save':(lambda:None)})
    jobman_entrypoint(DD(DEFAULT_HP_NIST), chanmock, type)