Mercurial > ift6266
view deep/stacked_dae/v_sylvain/sgd_optimization.py @ 598:a0fdc1f134da
minor changes to nips workshop submission
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Thu, 14 Oct 2010 22:09:55 -0400 |
parents | 78ed4628071d |
children |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 # Generic SdA optimization loop, adapted from the deeplearning.net tutorial import numpy import theano import time import datetime import theano.tensor as T import sys #import pickle import cPickle from jobman import DD import jobman, jobman.sql from copy import copy from stacked_dae import SdA from ift6266.utils.seriestables import * #For test purpose only buffersize=1000 default_series = { \ 'reconstruction_error' : DummySeries(), 'training_error' : DummySeries(), 'validation_error' : DummySeries(), 'test_error' : DummySeries(), 'params' : DummySeries() } def itermax(iter, max): for i,it in enumerate(iter): if i >= max: break yield it class SdaSgdOptimizer: def __init__(self, dataset, hyperparameters, n_ins, n_outs, examples_per_epoch, series=default_series, max_minibatches=None): self.dataset = dataset self.hp = hyperparameters self.n_ins = n_ins self.n_outs = n_outs self.parameters_pre=[] self.max_minibatches = max_minibatches print "SdaSgdOptimizer, max_minibatches =", max_minibatches self.ex_per_epoch = examples_per_epoch self.mb_per_epoch = examples_per_epoch / self.hp.minibatch_size self.series = series self.rng = numpy.random.RandomState(1234) self.init_classifier() sys.stdout.flush() def init_classifier(self): print "Constructing classifier" # we don't want to save arrays in DD objects, so # we recreate those arrays here nhl = self.hp.num_hidden_layers layers_sizes = [self.hp.hidden_layers_sizes] * nhl corruption_levels = [self.hp.corruption_levels] * nhl # construct the stacked denoising autoencoder class self.classifier = SdA( \ batch_size = self.hp.minibatch_size, \ n_ins= self.n_ins, \ hidden_layers_sizes = layers_sizes, \ n_outs = self.n_outs, \ corruption_levels = corruption_levels,\ rng = self.rng,\ pretrain_lr = self.hp.pretraining_lr, \ finetune_lr = self.hp.finetuning_lr) #theano.printing.pydotprint(self.classifier.pretrain_functions[0], "function.graph") sys.stdout.flush() def train(self): self.pretrain(self.dataset) self.finetune(self.dataset) def pretrain(self,dataset,decrease=0): print "STARTING PRETRAINING, time = ", datetime.datetime.now() sys.stdout.flush() un_fichier=int(819200.0/self.hp.minibatch_size) #Number of batches in a P07 file start_time = time.clock() ######## This is hardcoaded. THe 0.95 parameter is hardcoaded and can be changed at will ### #Set the decreasing rate of the learning rate. We want the final learning rate to #be 5% of the original learning rate. The decreasing factor is linear decreasing = (decrease*self.hp.pretraining_lr)/float(self.hp.pretraining_epochs_per_layer*800000/self.hp.minibatch_size) ## Pre-train layer-wise for i in xrange(self.classifier.n_layers): # go through pretraining epochs #To reset the learning rate to his original value learning_rate=self.hp.pretraining_lr for epoch in xrange(self.hp.pretraining_epochs_per_layer): # go through the training set batch_index=0 count=0 num_files=0 for x,y in dataset.train(self.hp.minibatch_size): c = self.classifier.pretrain_functions[i](x,learning_rate) count +=1 self.series["reconstruction_error"].append((epoch, batch_index), c) batch_index+=1 #If we need to decrease the learning rate for the pretrain if decrease != 0: learning_rate -= decreasing # useful when doing tests if self.max_minibatches and batch_index >= self.max_minibatches: break #When we pass through the data only once (the case with P07) #There is approximately 800*1024=819200 examples per file (1k per example and files are 800M) if self.hp.pretraining_epochs_per_layer == 1 and count%un_fichier == 0: print 'Pre-training layer %i, epoch %d, cost '%(i,num_files),c num_files+=1 sys.stdout.flush() self.series['params'].append((num_files,), self.classifier.all_params) #When NIST is used if self.hp.pretraining_epochs_per_layer > 1: print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c sys.stdout.flush() self.series['params'].append((epoch,), self.classifier.all_params) end_time = time.clock() print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) self.hp.update({'pretraining_time': end_time-start_time}) sys.stdout.flush() #To be able to load them later for tests on finetune self.parameters_pre=[copy(x.value) for x in self.classifier.params] f = open('params_pretrain.txt', 'w') cPickle.dump(self.parameters_pre,f,protocol=-1) f.close() def finetune(self,dataset,dataset_test,num_finetune,ind_test,special=0,decrease=0,dataset_test2=None): if special != 0 and special != 1: sys.exit('Bad value for variable special. Must be in {0,1}') print "STARTING FINETUNING, time = ", datetime.datetime.now() minibatch_size = self.hp.minibatch_size if ind_test == 0 or ind_test == 20: nom_test = "NIST" nom_train="P07" elif ind_test == 30: nom_train = "PNIST07" nom_test = "NIST" nom_test2 = "P07" elif ind_test == 31: nom_train = "NIST" nom_test = "PNIST07" nom_test2 = "P07" else: nom_test = "P07" nom_train = "NIST" # create a function to compute the mistakes that are made by the model # on the validation set, or testing set test_model = \ theano.function( [self.classifier.x,self.classifier.y], self.classifier.errors) # givens = { # self.classifier.x: ensemble_x, # self.classifier.y: ensemble_y]}) validate_model = \ theano.function( [self.classifier.x,self.classifier.y], self.classifier.errors) # givens = { # self.classifier.x: , # self.classifier.y: ]}) # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2. # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(self.mb_per_epoch, patience/2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch if self.max_minibatches and validation_frequency > self.max_minibatches: validation_frequency = self.max_minibatches / 2 best_params = None best_validation_loss = float('inf') test_score = 0. start_time = time.clock() done_looping = False epoch = 0 total_mb_index = 0 minibatch_index = 0 parameters_finetune=[] if ind_test == 21 | ind_test == 31: learning_rate = self.hp.finetuning_lr / 10.0 else: learning_rate = self.hp.finetuning_lr #The initial finetune lr while (epoch < num_finetune) and (not done_looping): epoch = epoch + 1 for x,y in dataset.train(minibatch_size,bufsize=buffersize): minibatch_index += 1 if special == 0: cost_ij = self.classifier.finetune(x,y,learning_rate) elif special == 1: cost_ij = self.classifier.finetune2(x,y) total_mb_index += 1 self.series["training_error"].append((epoch, minibatch_index), cost_ij) if (total_mb_index+1) % validation_frequency == 0: #minibatch_index += 1 #The validation set is always NIST (we want the model to be good on NIST) if ind_test == 0 | ind_test == 20 | ind_test == 30: iter=dataset_test.valid(minibatch_size,bufsize=buffersize) else: iter = dataset.valid(minibatch_size,bufsize=buffersize) if self.max_minibatches: iter = itermax(iter, self.max_minibatches) validation_losses = [validate_model(x,y) for x,y in iter] this_validation_loss = numpy.mean(validation_losses) self.series["validation_error"].\ append((epoch, minibatch_index), this_validation_loss*100.) print('epoch %i, minibatch %i, validation error on NIST : %f %%' % \ (epoch, minibatch_index+1, \ this_validation_loss*100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold : patience = max(patience, total_mb_index * patience_increase) # save best validation score, iteration number and parameters best_validation_loss = this_validation_loss best_iter = total_mb_index parameters_finetune=[copy(x.value) for x in self.classifier.params] # test it on the test set iter = dataset.test(minibatch_size,bufsize=buffersize) if self.max_minibatches: iter = itermax(iter, self.max_minibatches) test_losses = [test_model(x,y) for x,y in iter] test_score = numpy.mean(test_losses) #test it on the second test set iter2 = dataset_test.test(minibatch_size,bufsize=buffersize) if self.max_minibatches: iter2 = itermax(iter2, self.max_minibatches) test_losses2 = [test_model(x,y) for x,y in iter2] test_score2 = numpy.mean(test_losses2) #test it on the third test set if there is one iter3 = dataset_test2.test(minibatch_size, bufsize=buffersize) if self.max_minibatches: iter3 = itermax(iter3, self.max_minibatches) test_losses3 = [test_model(x,y) for x,y in iter3] test_score3 = numpy.mean(test_losses3) self.series["test_error"].\ append((epoch, minibatch_index), test_score*100.) print((' epoch %i, minibatch %i, test error on dataset %s (train data) of best ' 'model %f %%') % (epoch, minibatch_index+1,nom_train, test_score*100.)) print((' epoch %i, minibatch %i, test error on dataset %s of best ' 'model %f %%') % (epoch, minibatch_index+1,nom_test, test_score2*100.)) print((' epoch %i, minibatch %i, test error on dataset %s of best ' 'model %f %%') % (epoch, minibatch_index+1,nom_test2, test_score3*100.)) if patience <= total_mb_index: done_looping = True break #to exit the FOR loop sys.stdout.flush() # useful when doing tests if self.max_minibatches and minibatch_index >= self.max_minibatches: break if decrease == 1: if (ind_test == 21 & epoch % 100 == 0) | ind_test == 20 | ind_test == 30 | (ind_test == 31 & epoch % 100 == 0): learning_rate /= 2 #divide the learning rate by 2 for each new epoch of P07 (or 100 of NIST) self.series['params'].append((epoch,), self.classifier.all_params) if done_looping == True: #To exit completly the fine-tuning break #to exit the WHILE loop end_time = time.clock() self.hp.update({'finetuning_time':end_time-start_time,\ 'best_validation_error':best_validation_loss,\ 'test_score':test_score, 'num_finetuning_epochs':epoch}) print(('\nOptimization complete with best validation score of %f %%,' 'with test performance %f %% on dataset %s ') % (best_validation_loss * 100., test_score*100.,nom_train)) print(('The test score on the %s dataset is %f')%(nom_test,test_score2*100.)) print(('The test score on the %s dataset is %f')%(nom_test2,test_score3*100.)) print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.)) sys.stdout.flush() #Save a copy of the parameters in a file to be able to get them in the future if special == 1: #To keep a track of the value of the parameters f = open('params_finetune_stanford.txt', 'w') cPickle.dump(parameters_finetune,f,protocol=-1) f.close() elif ind_test == 0 | ind_test == 20: #To keep a track of the value of the parameters f = open('params_finetune_P07.txt', 'w') cPickle.dump(parameters_finetune,f,protocol=-1) f.close() elif ind_test== 1: #For the run with 2 finetunes. It will be faster. f = open('params_finetune_NIST.txt', 'w') cPickle.dump(parameters_finetune,f,protocol=-1) f.close() elif ind_test== 21: #To keep a track of the value of the parameters f = open('params_finetune_P07_then_NIST.txt', 'w') cPickle.dump(parameters_finetune,f,protocol=-1) f.close() elif ind_test == 30: f = open('params_finetune_PNIST07.txt', 'w') cPickle.dump(parameters_finetune,f,protocol=-1) f.close() elif ind_test == 31: f = open('params_finetune_PNIST07_then_NIST.txt', 'w') cPickle.dump(parameters_finetune,f,protocol=-1) f.close() #Set parameters like they where right after pre-train or finetune def reload_parameters(self,which): #self.parameters_pre=pickle.load('params_pretrain.txt') f = open(which) self.parameters_pre=cPickle.load(f) f.close() for idx,x in enumerate(self.parameters_pre): if x.dtype=='float64': self.classifier.params[idx].value=theano._asarray(copy(x),dtype=theano.config.floatX) else: self.classifier.params[idx].value=copy(x) def training_error(self,dataset,part=0): import math # create a function to compute the mistakes that are made by the model # on the validation set, or testing set test_model = \ theano.function( [self.classifier.x,self.classifier.y], self.classifier.errors) #train if part == 0: iter2 = dataset.train(self.hp.minibatch_size,bufsize=buffersize) name = 'train' #validation if part == 1: iter2 = dataset.valid(self.hp.minibatch_size,bufsize=buffersize) name = 'validation' if part == 2: iter2 = dataset.test(self.hp.minibatch_size,bufsize=buffersize) name = 'test' train_losses2 = [test_model(x,y) for x,y in iter2] train_score2 = numpy.mean(train_losses2) print 'On the ' + name + 'dataset' print(('\t the error is %f')%(train_score2*100.)) #print len(train_losses2) stderr = math.sqrt(train_score2-train_score2**2)/math.sqrt(len(train_losses2)*self.hp.minibatch_size) print (('\t the stderr is %f')%(stderr*100.)) #To see the prediction of the model, the real answer and the image to judge def see_error(self, dataset): import pylab #The function to know the prediction test_model = \ theano.function( [self.classifier.x,self.classifier.y], self.classifier.logLayer.y_pred) user = [] nb_total = 0 #total number of exemples seen nb_error = 0 #total number of errors for x,y in dataset.test(1): nb_total += 1 pred = self.translate(test_model(x,y)) rep = self.translate(y) error = pred != rep print 'prediction: ' + str(pred) +'\t answer: ' + str(rep) + '\t right: ' + str(not(error)) pylab.imshow(x.reshape((32,32))) pylab.draw() if error: nb_error += 1 user.append(int(raw_input("1 = The error is normal, 0 = The error is not normal : "))) print '\t\t character is hard to distinguish: ' + str(user[-1]) else: time.sleep(3) print '\n Over the '+str(nb_total)+' exemples, there is '+str(nb_error)+' errors. \nThe percentage of errors is'+ str(float(nb_error)/float(nb_total)) print 'The percentage of errors done by the model that an human will also do: ' + str(numpy.mean(user)) #To translate the numeric prediction in character if necessary def translate(self,y): if y <= 9: return y[0] elif y == 10: return 'A' elif y == 11: return 'B' elif y == 12: return 'C' elif y == 13: return 'D' elif y == 14: return 'E' elif y == 15: return 'F' elif y == 16: return 'G' elif y == 17: return 'H' elif y == 18: return 'I' elif y == 19: return 'J' elif y == 20: return 'K' elif y == 21: return 'L' elif y == 22: return 'M' elif y == 23: return 'N' elif y == 24: return 'O' elif y == 25: return 'P' elif y == 26: return 'Q' elif y == 27: return 'R' elif y == 28: return 'S' elif y == 29: return 'T' elif y == 30: return 'U' elif y == 31: return 'V' elif y == 32: return 'W' elif y == 33: return 'X' elif y == 34: return 'Y' elif y == 35: return 'Z' elif y == 36: return 'a' elif y == 37: return 'b' elif y == 38: return 'c' elif y == 39: return 'd' elif y == 40: return 'e' elif y == 41: return 'f' elif y == 42: return 'g' elif y == 43: return 'h' elif y == 44: return 'i' elif y == 45: return 'j' elif y == 46: return 'k' elif y == 47: return 'l' elif y == 48: return 'm' elif y == 49: return 'n' elif y == 50: return 'o' elif y == 51: return 'p' elif y == 52: return 'q' elif y == 53: return 'r' elif y == 54: return 's' elif y == 55: return 't' elif y == 56: return 'u' elif y == 57: return 'v' elif y == 58: return 'w' elif y == 59: return 'x' elif y == 60: return 'y' elif y == 61: return 'z'