Mercurial > ift6266
view deep/stacked_dae/sgd_optimization.py @ 178:938bd350dbf0
Make the datasets iterators return theano shared slices with the appropriate types.
author | Arnaud Bergeron <abergeron@gmail.com> |
---|---|
date | Sat, 27 Feb 2010 15:09:02 -0500 |
parents | 1f5937e9e530 |
children | b9ea8e2d071a |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 # Generic SdA optimization loop, adapted from the deeplearning.net tutorial import numpy import theano import time import theano.tensor as T import copy import sys from jobman import DD import jobman, jobman.sql from stacked_dae import SdA def shared_dataset(data_xy): data_x, data_y = data_xy #shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) #shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) #shared_y = T.cast(shared_y, 'int32') shared_x = theano.shared(data_x) shared_y = theano.shared(data_y) return shared_x, shared_y class SdaSgdOptimizer: def __init__(self, dataset, hyperparameters, n_ins, n_outs, input_divider=1.0,\ job_tree=False, results_db=None,\ experiment="",\ num_hidden_layers_to_try=[1,2,3], \ finetuning_lr_to_try=[0.1, 0.01, 0.001, 0.0001, 0.00001]): self.dataset = dataset self.hp = copy.copy(hyperparameters) self.n_ins = n_ins self.n_outs = n_outs self.input_divider = numpy.asarray(input_divider, dtype=theano.config.floatX) self.job_tree = job_tree self.results_db = results_db self.experiment = experiment if self.job_tree: assert(not results_db is None) # these hp should not be there, so we insert default values # we use 3 hidden layers as we'll iterate through 1,2,3 self.hp.finetuning_lr = 0.1 # dummy value, will be replaced anyway cl = self.hp.corruption_levels nh = self.hp.hidden_layers_sizes self.hp.corruption_levels = [cl,cl,cl] self.hp.hidden_layers_sizes = [nh,nh,nh] self.num_hidden_layers_to_try = num_hidden_layers_to_try self.finetuning_lr_to_try = finetuning_lr_to_try self.printout_frequency = 1000 self.rng = numpy.random.RandomState(1234) self.init_datasets() self.init_classifier() def init_datasets(self): print "init_datasets" train_set, valid_set, test_set = self.dataset self.test_set_x, self.test_set_y = shared_dataset(test_set) self.valid_set_x, self.valid_set_y = shared_dataset(valid_set) self.train_set_x, self.train_set_y = shared_dataset(train_set) # compute number of minibatches for training, validation and testing self.n_train_batches = self.train_set_x.value.shape[0] / self.hp.minibatch_size self.n_valid_batches = self.valid_set_x.value.shape[0] / self.hp.minibatch_size self.n_test_batches = self.test_set_x.value.shape[0] / self.hp.minibatch_size def init_classifier(self): print "Constructing classifier" # construct the stacked denoising autoencoder class self.classifier = SdA( \ train_set_x= self.train_set_x, \ train_set_y = self.train_set_y,\ batch_size = self.hp.minibatch_size, \ n_ins= self.n_ins, \ hidden_layers_sizes = self.hp.hidden_layers_sizes, \ n_outs = self.n_outs, \ corruption_levels = self.hp.corruption_levels,\ rng = self.rng,\ pretrain_lr = self.hp.pretraining_lr, \ finetune_lr = self.hp.finetuning_lr,\ input_divider = self.input_divider ) def train(self): self.pretrain() if not self.job_tree: # if job_tree is True, finetuning was already performed self.finetune() def pretrain(self): print "STARTING PRETRAINING" printout_acc = 0.0 last_error = 0.0 start_time = time.clock() ## Pre-train layer-wise for i in xrange(self.classifier.n_layers): # go through pretraining epochs for epoch in xrange(self.hp.pretraining_epochs_per_layer): # go through the training set for batch_index in xrange(self.n_train_batches): c = self.classifier.pretrain_functions[i](batch_index) printout_acc += c / self.printout_frequency if (batch_index+1) % self.printout_frequency == 0: print batch_index, "reconstruction cost avg=", printout_acc last_error = printout_acc printout_acc = 0.0 print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c self.job_splitter(i+1, time.clock()-start_time, last_error) end_time = time.clock() print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) # Save time by reusing intermediate results def job_splitter(self, current_pretraining_layer, pretraining_time, last_error): state_copy = None original_classifier = None if self.job_tree and current_pretraining_layer in self.num_hidden_layers_to_try: for lr in self.finetuning_lr_to_try: sys.stdout.flush() sys.stderr.flush() state_copy = copy.copy(self.hp) self.hp.update({'num_hidden_layers':current_pretraining_layer, \ 'finetuning_lr':lr,\ 'pretraining_time':pretraining_time,\ 'last_reconstruction_error':last_error}) original_classifier = self.classifier print "ORIGINAL CLASSIFIER MEANS",original_classifier.get_params_means() self.classifier = SdA.copy_reusing_lower_layers(original_classifier, current_pretraining_layer, new_finetuning_lr=lr) self.finetune() self.insert_finished_job() print "NEW CLASSIFIER MEANS AFTERWARDS",self.classifier.get_params_means() print "ORIGINAL CLASSIFIER MEANS AFTERWARDS",original_classifier.get_params_means() self.classifier = original_classifier self.hp = state_copy def insert_finished_job(self): job = copy.copy(self.hp) job[jobman.sql.STATUS] = jobman.sql.DONE job[jobman.sql.EXPERIMENT] = self.experiment # don,t try to store arrays in db job['hidden_layers_sizes'] = job.hidden_layers_sizes[0] job['corruption_levels'] = job.corruption_levels[0] print "Will insert finished job", job jobman.sql.insert_dict(jobman.flatten(job), self.results_db) def finetune(self): print "STARTING FINETUNING" index = T.lscalar() # index to a [mini]batch minibatch_size = self.hp.minibatch_size # create a function to compute the mistakes that are made by the model # on the validation set, or testing set test_model = theano.function([index], self.classifier.errors, givens = { self.classifier.x: self.test_set_x[index*minibatch_size:(index+1)*minibatch_size] / self.input_divider, self.classifier.y: self.test_set_y[index*minibatch_size:(index+1)*minibatch_size]}) validate_model = theano.function([index], self.classifier.errors, givens = { self.classifier.x: self.valid_set_x[index*minibatch_size:(index+1)*minibatch_size] / self.input_divider, self.classifier.y: self.valid_set_y[index*minibatch_size:(index+1)*minibatch_size]}) # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2. # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(self.n_train_batches, patience/2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = float('inf') test_score = 0. start_time = time.clock() done_looping = False epoch = 0 printout_acc = 0.0 if not self.hp.has_key('max_finetuning_epochs'): self.hp.max_finetuning_epochs = 1000 while (epoch < self.hp.max_finetuning_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(self.n_train_batches): cost_ij = self.classifier.finetune(minibatch_index) iter = epoch * self.n_train_batches + minibatch_index printout_acc += cost_ij / float(self.printout_frequency * minibatch_size) if (iter+1) % self.printout_frequency == 0: print iter, "cost avg=", printout_acc printout_acc = 0.0 if (iter+1) % validation_frequency == 0: validation_losses = [validate_model(i) for i in xrange(self.n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % \ (epoch, minibatch_index+1, self.n_train_batches, \ this_validation_loss*100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold : patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [test_model(i) for i in xrange(self.n_test_batches)] test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of best ' 'model %f %%') % (epoch, minibatch_index+1, self.n_train_batches, test_score*100.)) if patience <= iter : done_looping = True break end_time = time.clock() self.hp.update({'finetuning_time':end_time-start_time,\ 'best_validation_error':best_validation_loss,\ 'test_score':test_score, 'num_finetuning_epochs':epoch}) print(('Optimization complete with best validation score of %f %%,' 'with test performance %f %%') % (best_validation_loss * 100., test_score*100.)) print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.))