Mercurial > ift6266
view demo/mlp_conv.c @ 642:8b1a0b9fecff
made publication list shorter.
author | Frederic Bastien <nouiz@nouiz.org> |
---|---|
date | Mon, 21 Mar 2011 11:29:09 -0400 |
parents | 269c39f55134 |
children |
line wrap: on
line source
#include "AS3.h" #include <math.h> typedef struct { int n,x,y; float *w, *b; int nonlin; // 0aucune,1sigm,2tanh,3softmax int maxpool; // 01 } LAYER; LAYER models[] = { {500,32,32,0,0,2,0},{62,1,1,0,0,3,0}, {1000,32,32,0,0,1,0},{1000,1,1,0,0,1,0},{1000,1,1,0,0,1,0},{62,1,1,0,0,1,0} }; int mod_i[] = {0,2,6}; LAYER *L; int nl; float *data, *o; #define BUF_SIZE 20000 static AS3_Val initparam(void* self, AS3_Val args) { AS3_Val tmp = AS3_Undefined(); int il, len; for (il=0; il < sizeof(models)/sizeof(LAYER); ++il) { tmp = AS3_Get(args, AS3_Int(2*il)); len = AS3_IntValue(AS3_GetS(tmp, "length")); models[il].w = (float*) malloc(len); AS3_ByteArray_readBytes(models[il].w, tmp, len); tmp = AS3_Get(args, AS3_Int(2*il+1)); len = AS3_IntValue(AS3_GetS(tmp, "length")); models[il].b = (float*) malloc(len); AS3_ByteArray_readBytes(models[il].b, tmp, len); } data = (float*) malloc(BUF_SIZE); o = (float*) malloc(BUF_SIZE); return AS3_Int(0); } static AS3_Val choosemodel(void* self, AS3_Val args) { int il; AS3_ArrayValue( args, "IntType", &il ); L = models + mod_i[il]; nl = mod_i[il+1] - mod_i[il]; return AS3_Int(0); } static AS3_Val prediction(void* self, AS3_Val args) { AS3_Val in_arr = AS3_Undefined(), out_arr = AS3_Array(0); float *tmp, d, e; int i,j,k,l, n,x,y, newx,newy, il, dx,dy; LAYER *pL; AS3_ArrayValue( args, "AS3ValType", &in_arr ); for(i=0; i < 1024; ++i) data[i] = AS3_IntValue(AS3_Get(in_arr, AS3_Int(4*i+1))) /255.0; n = 1; x = 32; y = 32; #define DATA(l,j,i) data[((l)*y + (j))*x + (i)] #define O(k,dy,dx) o[((k)*newy + (dy))*newx + (dx)] #define W(k,l,j,i) pL->w[(((k)*n + (l))*pL->y + (j))*pL->x + (i)] for (il=0; il < nl; ++il) { flyield(); pL = L+il; newx = x+1-pL->x; newy = y+1-pL->y; for (dx=0; dx < newx; ++dx) for (dy=0; dy < newy; ++dy) for (k=0; k < pL->n; ++k) { d = pL->b[k]; for (l=0; l < n; ++l) for(j=0; j < pL->y; ++j) for(i=0; i < pL->x; ++i) d += DATA(l,j+dy,i+dx)*W(k,l,j,i); O(k,dy,dx) = d; } if(pL->maxpool) { for (k=0; k < pL->n; ++k) for (dx=0; dx < newx; dx+=2) for (dy=0; dy < newy; dy+=2) { d=O(k,dy,dx); e=O(k,dy,dx+1); if(e>d) d=e; e=O(k,dy+1,dx); if(e>d) d=e; e=O(k,dy+1,dx+1); if(e>d) d=e; O(k,dy/2,dx/2)=d; } newx /= 2; newy /= 2; } for (dx=0; dx < newx; ++dx) for (dy=0; dy < newy; ++dy) { e = 0; for (k=0; k < pL->n; ++k) { d = O(k,dy,dx); if(pL->nonlin==1) d=1.0/(1.0 + exp(-d)); else if(pL->nonlin==2) d=tanh(d); else if(pL->nonlin==3) { d=exp(d); e += d; } O(k,dy,dx) = d; } if(pL->nonlin==3 && e) for (k=0; k < pL->n; ++k) O(k,dy,dx) /= e; } tmp = data; data = o; o = tmp; x = newx; y = newy; n = pL->n; } for(i=0; i < n*x*y; ++i) AS3_Set(out_arr, AS3_Int(i), AS3_Number(data[i])); return out_arr; } int main() { AS3_Val initparamMethod = AS3_Function( NULL, initparam ); AS3_Val choosemodelMethod = AS3_Function( NULL, choosemodel ); AS3_Val predictionMethod = AS3_FunctionAsync( NULL, prediction ); AS3_Val result = AS3_Object( "initparam: AS3ValType, choosemodel: AS3ValType, prediction: AS3ValType", initparamMethod, choosemodelMethod, predictionMethod ); AS3_Release( initparamMethod ); AS3_Release( choosemodelMethod ); AS3_Release( predictionMethod ); AS3_LibInit( result ); return 0; }