Mercurial > ift6266
view code_tutoriel/logistic_cg.py @ 486:877af97ee193
section resultats et appendice
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Mon, 31 May 2010 22:03:35 -0400 |
parents | 4bc5eeec6394 |
children |
line wrap: on
line source
""" This tutorial introduces logistic regression using Theano and conjugate gradient descent. Logistic regression is a probabilistic, linear classifier. It is parametrized by a weight matrix :math:`W` and a bias vector :math:`b`. Classification is done by projecting data points onto a set of hyperplanes, the distance to which is used to determine a class membership probability. Mathematically, this can be written as: .. math:: P(Y=i|x, W,b) &= softmax_i(W x + b) \\ &= \frac {e^{W_i x + b_i}} {\sum_j e^{W_j x + b_j}} The output of the model or prediction is then done by taking the argmax of the vector whose i'th element is P(Y=i|x). .. math:: y_{pred} = argmax_i P(Y=i|x,W,b) This tutorial presents a stochastic gradient descent optimization method suitable for large datasets, and a conjugate gradient optimization method that is suitable for smaller datasets. References: - textbooks: "Pattern Recognition and Machine Learning" - Christopher M. Bishop, section 4.3.2 """ __docformat__ = 'restructedtext en' import numpy, time, cPickle, gzip import theano import theano.tensor as T class LogisticRegression(object): """Multi-class Logistic Regression Class The logistic regression is fully described by a weight matrix :math:`W` and bias vector :math:`b`. Classification is done by projecting data points onto a set of hyperplanes, the distance to which is used to determine a class membership probability. """ def __init__(self, input, n_in, n_out): """ Initialize the parameters of the logistic regression :type input: theano.tensor.TensorType :param input: symbolic variable that describes the input of the architecture ( one minibatch) :type n_in: int :param n_in: number of input units, the dimension of the space in which the datapoint lies :type n_out: int :param n_out: number of output units, the dimension of the space in which the target lies """ # initialize theta = (W,b) with 0s; W gets the shape (n_in, n_out), # while b is a vector of n_out elements, making theta a vector of # n_in*n_out + n_out elements self.theta = theano.shared( value = numpy.zeros(n_in*n_out+n_out, dtype = theano.config.floatX) ) # W is represented by the fisr n_in*n_out elements of theta self.W = self.theta[0:n_in*n_out].reshape((n_in,n_out)) # b is the rest (last n_out elements) self.b = self.theta[n_in*n_out:n_in*n_out+n_out] # compute vector of class-membership probabilities in symbolic form self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) # compute prediction as class whose probability is maximal in # symbolic form self.y_pred=T.argmax(self.p_y_given_x, axis=1) def negative_log_likelihood(self, y): """Return the negative log-likelihood of the prediction of this model under a given target distribution. .. math:: \frac{1}{|\mathcal{D}|}\mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = \frac{1}{|\mathcal{D}|}\sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ \ell (\theta=\{W,b\}, \mathcal{D}) :type y: theano.tensor.TensorType :param y: corresponds to a vector that gives for each example the correct label """ return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) def errors(self, y): """Return a float representing the number of errors in the minibatch over the total number of examples of the minibatch :type y: theano.tensor.TensorType :param y: corresponds to a vector that gives for each example the correct label """ # check if y has same dimension of y_pred if y.ndim != self.y_pred.ndim: raise TypeError('y should have the same shape as self.y_pred', ('y', target.type, 'y_pred', self.y_pred.type)) # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError() def cg_optimization_mnist( n_epochs=50, mnist_pkl_gz='mnist.pkl.gz' ): """Demonstrate conjugate gradient optimization of a log-linear model This is demonstrated on MNIST. :type n_epochs: int :param n_epochs: number of epochs to run the optimizer :type mnist_pkl_gz: string :param mnist_pkl_gz: the path of the mnist training file from http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz """ ############# # LOAD DATA # ############# print '... loading data' # Load the dataset f = gzip.open(mnist_pkl_gz,'rb') train_set, valid_set, test_set = cPickle.load(f) f.close() def shared_dataset(data_xy): """ Function that loads the dataset into shared variables The reason we store our dataset in shared variables is to allow Theano to copy it into the GPU memory (when code is run on GPU). Since copying data into the GPU is slow, copying a minibatch everytime is needed (the default behaviour if the data is not in a shared variable) would lead to a large decrease in performance. """ data_x, data_y = data_xy shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) # When storing data on the GPU it has to be stored as floats # therefore we will store the labels as ``floatX`` as well # (``shared_y`` does exactly that). But during our computations # we need them as ints (we use labels as index, and if they are # floats it doesn't make sense) therefore instead of returning # ``shared_y`` we will have to cast it to int. This little hack # lets ous get around this issue return shared_x, T.cast(shared_y, 'int32') test_set_x, test_set_y = shared_dataset(test_set) valid_set_x, valid_set_y = shared_dataset(valid_set) train_set_x, train_set_y = shared_dataset(train_set) batch_size = 600 # size of the minibatch n_train_batches = train_set_x.value.shape[0] / batch_size n_valid_batches = valid_set_x.value.shape[0] / batch_size n_test_batches = test_set_x.value.shape[0] / batch_size ishape = (28,28) # this is the size of MNIST images n_in = 28*28 # number of input units n_out = 10 # number of output units ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # allocate symbolic variables for the data minibatch_offset = T.lscalar() # offset to the start of a [mini]batch x = T.matrix() # the data is presented as rasterized images y = T.ivector() # the labels are presented as 1D vector of # [int] labels # construct the logistic regression class classifier = LogisticRegression( input=x, n_in=28*28, n_out=10) # the cost we minimize during training is the negative log likelihood of # the model in symbolic format cost = classifier.negative_log_likelihood(y).mean() # compile a theano function that computes the mistakes that are made by # the model on a minibatch test_model = theano.function([minibatch_offset], classifier.errors(y), givens={ x:test_set_x[minibatch_offset:minibatch_offset+batch_size], y:test_set_y[minibatch_offset:minibatch_offset+batch_size]}) validate_model = theano.function([minibatch_offset],classifier.errors(y), givens={ x:valid_set_x[minibatch_offset:minibatch_offset+batch_size], y:valid_set_y[minibatch_offset:minibatch_offset+batch_size]}) # compile a thenao function that returns the cost of a minibatch batch_cost = theano.function([minibatch_offset], cost, givens= { x : train_set_x[minibatch_offset:minibatch_offset+batch_size], y : train_set_y[minibatch_offset:minibatch_offset+batch_size]}) # compile a theano function that returns the gradient of the minibatch # with respect to theta batch_grad = theano.function([minibatch_offset], T.grad(cost,classifier.theta), givens= { x : train_set_x[minibatch_offset:minibatch_offset+batch_size], y : train_set_y[minibatch_offset:minibatch_offset+batch_size]}) # creates a function that computes the average cost on the training set def train_fn(theta_value): classifier.theta.value = theta_value train_losses = [batch_cost(i*batch_size) for i in xrange(n_train_batches)] return numpy.mean(train_losses) # creates a function that computes the average gradient of cost with # respect to theta def train_fn_grad(theta_value): classifier.theta.value = theta_value grad = batch_grad(0) for i in xrange(1,n_train_batches): grad += batch_grad(i*batch_size) return grad/n_train_batches validation_scores = [float('inf'), 0] # creates the validation function def callback(theta_value): classifier.theta.value = theta_value #compute the validation loss validation_losses = [validate_model(i*batch_size) for i in xrange(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print('validation error %f %%' % (this_validation_loss*100.,)) # check if it is better then best validation score got until now if this_validation_loss < validation_scores[0]: # if so, replace the old one, and compute the score on the # testing dataset validation_scores[0] = this_validation_loss test_loses = [test_model(i*batch_size) for i in xrange(n_test_batches)] validation_scores[1] = numpy.mean(test_loses) ############### # TRAIN MODEL # ############### # using scipy conjugate gradient optimizer import scipy.optimize print ("Optimizing using scipy.optimize.fmin_cg...") start_time = time.clock() best_w_b = scipy.optimize.fmin_cg( f = train_fn, x0 = numpy.zeros((n_in+1)*n_out, dtype=x.dtype), fprime = train_fn_grad, callback = callback, disp = 0, maxiter = n_epochs) end_time = time.clock() print(('Optimization complete with best validation score of %f %%, with ' 'test performance %f %%') % (validation_scores[0]*100., validation_scores[1]*100.)) print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) if __name__ == '__main__': cg_optimization_mnist()