Mercurial > ift6266
view code_tutoriel/deep.py @ 486:877af97ee193
section resultats et appendice
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Mon, 31 May 2010 22:03:35 -0400 |
parents | 4bc5eeec6394 |
children |
line wrap: on
line source
""" Draft of DBN, DAA, SDAA, RBM tutorial code """ import sys import numpy import theano import time import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams from theano import shared, function import gzip import cPickle import pylearn.io.image_tiling import PIL # NNET STUFF class LogisticRegression(object): """Multi-class Logistic Regression Class The logistic regression is fully described by a weight matrix :math:`W` and bias vector :math:`b`. Classification is done by projecting data points onto a set of hyperplanes, the distance to which is used to determine a class membership probability. """ def __init__(self, input, n_in, n_out): """ Initialize the parameters of the logistic regression :param input: symbolic variable that describes the input of the architecture (one minibatch) :type n_in: int :param n_in: number of input units, the dimension of the space in which the datapoints lie :type n_out: int :param n_out: number of output units, the dimension of the space in which the labels lie """ # initialize with 0 the weights W as a matrix of shape (n_in, n_out) self.W = theano.shared( value=numpy.zeros((n_in,n_out), dtype = theano.config.floatX) ) # initialize the baises b as a vector of n_out 0s self.b = theano.shared( value=numpy.zeros((n_out,), dtype = theano.config.floatX) ) # compute vector of class-membership probabilities in symbolic form self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) # compute prediction as class whose probability is maximal in # symbolic form self.y_pred=T.argmax(self.p_y_given_x, axis=1) # list of parameters for this layer self.params = [self.W, self.b] def negative_log_likelihood(self, y): """Return the mean of the negative log-likelihood of the prediction of this model under a given target distribution. :param y: corresponds to a vector that gives for each example the correct label Note: we use the mean instead of the sum so that the learning rate is less dependent on the batch size """ return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) def errors(self, y): """Return a float representing the number of errors in the minibatch over the total number of examples of the minibatch ; zero one loss over the size of the minibatch """ # check if y has same dimension of y_pred if y.ndim != self.y_pred.ndim: raise TypeError('y should have the same shape as self.y_pred', ('y', target.type, 'y_pred', self.y_pred.type)) # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError() class SigmoidalLayer(object): def __init__(self, rng, input, n_in, n_out): """ Typical hidden layer of a MLP: units are fully-connected and have sigmoidal activation function. Weight matrix W is of shape (n_in,n_out) and the bias vector b is of shape (n_out,). Hidden unit activation is given by: sigmoid(dot(input,W) + b) :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.matrix :param input: a symbolic tensor of shape (n_examples, n_in) :type n_in: int :param n_in: dimensionality of input :type n_out: int :param n_out: number of hidden units """ self.input = input W_values = numpy.asarray( rng.uniform( \ low = -numpy.sqrt(6./(n_in+n_out)), \ high = numpy.sqrt(6./(n_in+n_out)), \ size = (n_in, n_out)), dtype = theano.config.floatX) self.W = theano.shared(value = W_values) b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) self.b = theano.shared(value= b_values) self.output = T.nnet.sigmoid(T.dot(input, self.W) + self.b) self.params = [self.W, self.b] # PRETRAINING LAYERS class RBM(object): """ *** WRITE THE ENERGY FUNCTION USE SAME LETTERS AS VARIABLE NAMES IN CODE """ def __init__(self, input=None, n_visible=None, n_hidden=None, W=None, hbias=None, vbias=None, numpy_rng=None, theano_rng=None): """ RBM constructor. Defines the parameters of the model along with basic operations for inferring hidden from visible (and vice-versa), as well as for performing CD updates. :param input: None for standalone RBMs or symbolic variable if RBM is part of a larger graph. :param n_visible: number of visible units (necessary when W or vbias is None) :param n_hidden: number of hidden units (necessary when W or hbias is None) :param W: weights to use for the RBM. None means that a shared variable will be created with a randomly chosen matrix of size (n_visible, n_hidden). :param hbias: *** :param vbias: *** :param numpy_rng: random number generator (necessary when W is None) """ params = [] if W is None: # choose initial values for weight matrix of RBM initial_W = numpy.asarray( numpy_rng.uniform( \ low=-numpy.sqrt(6./(n_hidden+n_visible)), \ high=numpy.sqrt(6./(n_hidden+n_visible)), \ size=(n_visible, n_hidden)), \ dtype=theano.config.floatX) W = theano.shared(value=initial_W, name='W') params.append(W) if hbias is None: # theano shared variables for hidden biases hbias = theano.shared(value=numpy.zeros(n_hidden, dtype=theano.config.floatX), name='hbias') params.append(hbias) if vbias is None: # theano shared variables for visible biases vbias = theano.shared(value=numpy.zeros(n_visible, dtype=theano.config.floatX), name='vbias') params.append(vbias) if input is None: # initialize input layer for standalone RBM or layer0 of DBN input = T.matrix('input') # setup theano random number generator if theano_rng is None: theano_rng = RandomStreams(numpy_rng.randint(2**30)) self.visible = self.input = input self.W = W self.hbias = hbias self.vbias = vbias self.theano_rng = theano_rng self.params = params self.hidden_mean = T.nnet.sigmoid(T.dot(input, W)+hbias) self.hidden_sample = theano_rng.binomial(self.hidden_mean.shape, 1, self.hidden_mean) def gibbs_k(self, v_sample, k): ''' This function implements k steps of Gibbs sampling ''' # We compute the visible after k steps of Gibbs by iterating # over ``gibs_1`` for k times; this can be done in Theano using # the `scan op`. For a more comprehensive description of scan see # http://deeplearning.net/software/theano/library/scan.html . def gibbs_1(v0_sample, W, hbias, vbias): ''' This function implements one Gibbs step ''' # compute the activation of the hidden units given a sample of the # vissibles h0_mean = T.nnet.sigmoid(T.dot(v0_sample, W) + hbias) # get a sample of the hiddens given their activation h0_sample = self.theano_rng.binomial(h0_mean.shape, 1, h0_mean) # compute the activation of the visible given the hidden sample v1_mean = T.nnet.sigmoid(T.dot(h0_sample, W.T) + vbias) # get a sample of the visible given their activation v1_act = self.theano_rng.binomial(v1_mean.shape, 1, v1_mean) return [v1_mean, v1_act] # DEBUGGING TO DO ALL WITHOUT SCAN if k == 1: return gibbs_1(v_sample, self.W, self.hbias, self.vbias) # Because we require as output two values, namely the mean field # approximation of the visible and the sample obtained after k steps, # scan needs to know the shape of those two outputs. Scan takes # this information from the variables containing the initial state # of the outputs. Since we do not need a initial state of ``v_mean`` # we provide a dummy one used only to get the correct shape v_mean = T.zeros_like(v_sample) # ``outputs_taps`` is an argument of scan which describes at each # time step what past values of the outputs the function applied # recursively needs. This is given in the form of a dictionary, # where the keys are outputs indexes, and values are a list of # of the offsets used by the corresponding outputs # In our case the function ``gibbs_1`` applied recursively, requires # at time k the past value k-1 for the first output (index 0) and # no past value of the second output outputs_taps = { 0 : [-1], 1 : [] } v_means, v_samples = theano.scan( fn = gibbs_1, sequences = [], initial_states = [v_sample, v_mean], non_sequences = [self.W, self.hbias, self.vbias], outputs_taps = outputs_taps, n_steps = k) return v_means[-1], v_samples[-1] def free_energy(self, v_sample): wx_b = T.dot(v_sample, self.W) + self.hbias vbias_term = T.sum(T.dot(v_sample, self.vbias)) hidden_term = T.sum(T.log(1+T.exp(wx_b))) return -hidden_term - vbias_term def cd(self, visible = None, persistent = None, steps = 1): """ Return a 5-tuple of values related to contrastive divergence: (cost, end-state of negative-phase chain, gradient on weights, gradient on hidden bias, gradient on visible bias) If visible is None, it defaults to self.input If persistent is None, it defaults to self.input CD aka CD1 - cd() CD-10 - cd(steps=10) PCD - cd(persistent=shared(numpy.asarray(initializer))) PCD-k - cd(persistent=shared(numpy.asarray(initializer)), steps=10) """ if visible is None: visible = self.input if visible is None: raise TypeError('visible argument is required when self.input is None') if steps is None: steps = self.gibbs_1 if persistent is None: chain_start = visible else: chain_start = persistent chain_end_mean, chain_end_sample = self.gibbs_k(chain_start, steps) #print >> sys.stderr, "WARNING: DEBUGGING with wrong FREE ENERGY" #free_energy_delta = - self.free_energy(chain_end_sample) free_energy_delta = self.free_energy(visible) - self.free_energy(chain_end_sample) # we will return all of these regardless of what is in self.params all_params = [self.W, self.hbias, self.vbias] gparams = T.grad(free_energy_delta, all_params, consider_constant = [chain_end_sample]) cross_entropy = T.mean(T.sum( visible*T.log(chain_end_mean) + (1 - visible)*T.log(1-chain_end_mean), axis = 1)) return (cross_entropy, chain_end_sample,) + tuple(gparams) def cd_updates(self, lr, visible = None, persistent = None, steps = 1): """ Return the learning updates for the RBM parameters that are shared variables. Also returns an update for the persistent if it is a shared variable. These updates are returned as a dictionary. :param lr: [scalar] learning rate for contrastive divergence learning :param visible: see `cd_grad` :param persistent: see `cd_grad` :param steps: see `cd_grad` """ cross_entropy, chain_end, gW, ghbias, gvbias = self.cd(visible, persistent, steps) updates = {} if hasattr(self.W, 'value'): updates[self.W] = self.W - lr * gW if hasattr(self.hbias, 'value'): updates[self.hbias] = self.hbias - lr * ghbias if hasattr(self.vbias, 'value'): updates[self.vbias] = self.vbias - lr * gvbias if persistent: #if persistent is a shared var, then it means we should use updates[persistent] = chain_end return updates # DEEP MODELS class DBN(object): """ *** WHAT IS A DBN? """ def __init__(self, input_len, hidden_layers_sizes, n_classes, rng): """ This class is made to support a variable number of layers. :param train_set_x: symbolic variable pointing to the training dataset :param train_set_y: symbolic variable pointing to the labels of the training dataset :param input_len: dimension of the input to the sdA :param n_layers_sizes: intermidiate layers size, must contain at least one value :param n_classes: dimension of the output of the network :param corruption_levels: amount of corruption to use for each layer :param rng: numpy random number generator used to draw initial weights :param pretrain_lr: learning rate used during pre-trainnig stage :param finetune_lr: learning rate used during finetune stage """ self.sigmoid_layers = [] self.rbm_layers = [] self.pretrain_functions = [] self.params = [] theano_rng = RandomStreams(rng.randint(2**30)) # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels input = self.x # The SdA is an MLP, for which all weights of intermidiate layers # are shared with a different denoising autoencoders # We will first construct the SdA as a deep multilayer perceptron, # and when constructing each sigmoidal layer we also construct a # denoising autoencoder that shares weights with that layer, and # compile a training function for that denoising autoencoder for n_hid in hidden_layers_sizes: # construct the sigmoidal layer sigmoid_layer = SigmoidalLayer(rng, input, input_len, n_hid) self.sigmoid_layers.append(sigmoid_layer) self.rbm_layers.append(RBM(input=input, W=sigmoid_layer.W, hbias=sigmoid_layer.b, n_visible = input_len, n_hidden = n_hid, numpy_rng=rng, theano_rng=theano_rng)) # its arguably a philosophical question... # but we are going to only declare that the parameters of the # sigmoid_layers are parameters of the StackedDAA # the hidden-layer biases in the daa_layers are parameters of those # daa_layers, but not the StackedDAA self.params.extend(self.sigmoid_layers[-1].params) # get ready for the next loop iteration input_len = n_hid input = self.sigmoid_layers[-1].output # We now need to add a logistic layer on top of the MLP self.logistic_regressor = LogisticRegression(input = input, n_in = input_len, n_out = n_classes) self.params.extend(self.logistic_regressor.params) def pretraining_functions(self, train_set_x, batch_size, learning_rate, k=1): if k!=1: raise NotImplementedError() index = T.lscalar() # index to a [mini]batch n_train_batches = train_set_x.value.shape[0] / batch_size batch_begin = (index % n_train_batches) * batch_size batch_end = batch_begin+batch_size print 'TRAIN_SET X', train_set_x.value.shape rval = [] for rbm in self.rbm_layers: # N.B. these cd() samples are independent from the # samples used for learning outputs = list(rbm.cd())[0:2] rval.append(function([index], outputs, updates = rbm.cd_updates(lr=learning_rate), givens = {self.x: train_set_x[batch_begin:batch_end]})) if rbm is self.rbm_layers[0]: f = rval[-1] AA=len(outputs) for i, implicit_out in enumerate(f.maker.env.outputs): #[len(outputs):]: print 'OUTPUT ', i theano.printing.debugprint(implicit_out, file=sys.stdout) return rval def finetune(self, datasets, lr, batch_size): # unpack the various datasets (train_set_x, train_set_y) = datasets[0] (valid_set_x, valid_set_y) = datasets[1] (test_set_x, test_set_y) = datasets[2] # compute number of minibatches for training, validation and testing assert train_set_x.value.shape[0] % batch_size == 0 assert valid_set_x.value.shape[0] % batch_size == 0 assert test_set_x.value.shape[0] % batch_size == 0 n_train_batches = train_set_x.value.shape[0] / batch_size n_valid_batches = valid_set_x.value.shape[0] / batch_size n_test_batches = test_set_x.value.shape[0] / batch_size index = T.lscalar() # index to a [mini]batch target = self.y train_index = index % n_train_batches classifier = self.logistic_regressor cost = classifier.negative_log_likelihood(target) # compute the gradients with respect to the model parameters gparams = T.grad(cost, self.params) # compute list of fine-tuning updates updates = [(param, param - gparam*finetune_lr) for param,gparam in zip(self.params, gparams)] train_fn = theano.function([index], cost, updates = updates, givens = { self.x : train_set_x[train_index*batch_size:(train_index+1)*batch_size], target : train_set_y[train_index*batch_size:(train_index+1)*batch_size]}) test_score_i = theano.function([index], classifier.errors(target), givens = { self.x: test_set_x[index*batch_size:(index+1)*batch_size], target: test_set_y[index*batch_size:(index+1)*batch_size]}) valid_score_i = theano.function([index], classifier.errors(target), givens = { self.x: valid_set_x[index*batch_size:(index+1)*batch_size], target: valid_set_y[index*batch_size:(index+1)*batch_size]}) def test_scores(): return [test_score_i(i) for i in xrange(n_test_batches)] def valid_scores(): return [valid_score_i(i) for i in xrange(n_valid_batches)] return train_fn, valid_scores, test_scores def load_mnist(filename): f = gzip.open(filename,'rb') train_set, valid_set, test_set = cPickle.load(f) f.close() def shared_dataset(data_xy): data_x, data_y = data_xy shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) return shared_x, T.cast(shared_y, 'int32') n_train_examples = train_set[0].shape[0] datasets = shared_dataset(train_set), shared_dataset(valid_set), shared_dataset(test_set) return n_train_examples, datasets def dbn_main(finetune_lr = 0.01, pretraining_epochs = 10, pretrain_lr = 0.1, training_epochs = 1000, batch_size = 20, mnist_file='mnist.pkl.gz'): """ Demonstrate stochastic gradient descent optimization for a multilayer perceptron This is demonstrated on MNIST. :param learning_rate: learning rate used in the finetune stage (factor for the stochastic gradient) :param pretraining_epochs: number of epoch to do pretraining :param pretrain_lr: learning rate to be used during pre-training :param n_iter: maximal number of iterations ot run the optimizer :param mnist_file: path the the pickled mnist_file """ n_train_examples, train_valid_test = load_mnist(mnist_file) print "Creating a Deep Belief Network" deep_model = DBN( input_len=28*28, hidden_layers_sizes = [500, 150, 100], n_classes=10, rng = numpy.random.RandomState()) #### #### Phase 1: Pre-training #### print "Pretraining (unsupervised learning) ..." pretrain_functions = deep_model.pretraining_functions( batch_size=batch_size, train_set_x=train_valid_test[0][0], learning_rate=pretrain_lr, ) start_time = time.clock() for layer_idx, pretrain_fn in enumerate(pretrain_functions): # go through pretraining epochs print 'Pre-training layer %i'% layer_idx for i in xrange(pretraining_epochs * n_train_examples / batch_size): outstuff = pretrain_fn(i) xe, negsample = outstuff[:2] print (layer_idx, i, n_train_examples / batch_size, float(xe), 'Wmin', deep_model.rbm_layers[0].W.value.min(), 'Wmax', deep_model.rbm_layers[0].W.value.max(), 'vmin', deep_model.rbm_layers[0].vbias.value.min(), 'vmax', deep_model.rbm_layers[0].vbias.value.max(), #'x>0.3', (input_i>0.3).sum(), ) sys.stdout.flush() if i % 1000 == 0: PIL.Image.fromarray( pylearn.io.image_tiling.tile_raster_images(negsample, (28,28), (10,10), tile_spacing=(1,1))).save('samples_%i_%i.png'%(layer_idx,i)) PIL.Image.fromarray( pylearn.io.image_tiling.tile_raster_images( deep_model.rbm_layers[0].W.value.T, (28,28), (10,10), tile_spacing=(1,1))).save('filters_%i_%i.png'%(layer_idx,i)) end_time = time.clock() print 'Pretraining took %f minutes' %((end_time - start_time)/60.) return print "Fine tuning (supervised learning) ..." train_fn, valid_scores, test_scores =\ deep_model.finetune_functions(train_valid_test[0][0], learning_rate=finetune_lr, # the learning rate batch_size = batch_size) # number of examples to use at once #### #### Phase 2: Fine Tuning #### patience = 10000 # look as this many examples regardless patience_increase = 2. # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_examples, patience/2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch patience_max = n_train_examples * training_epochs best_epoch = None best_epoch_test_score = None best_epoch_valid_score = float('inf') start_time = time.clock() for i in xrange(patience_max): if i >= patience: break cost_i = train_fn(i) if i % validation_frequency == 0: validation_i = numpy.mean([score for score in valid_scores()]) # if we got the best validation score until now if validation_i < best_epoch_valid_score: # improve patience if loss improvement is good enough threshold_i = best_epoch_valid_score * improvement_threshold if validation_i < threshold_i: patience = max(patience, i * patience_increase) # save best validation score and iteration number best_epoch_valid_score = validation_i best_epoch = i/validation_i best_epoch_test_score = numpy.mean( [score for score in test_scores()]) print('epoch %i, validation error %f %%, test error %f %%'%( i/validation_frequency, validation_i*100., best_epoch_test_score*100.)) else: print('epoch %i, validation error %f %%' % ( i/validation_frequency, validation_i*100.)) end_time = time.clock() print(('Optimization complete with best validation score of %f %%,' 'with test performance %f %%') % (finetune_status['best_validation_loss']*100., finetune_status['test_score']*100.)) print ('The code ran for %f minutes' % ((finetune_status['duration'])/60.)) def rbm_main(): rbm = RBM(n_visible=20, n_hidden=30, numpy_rng = numpy.random.RandomState(34)) cd_updates = rbm.cd_updates(lr=0.25) print cd_updates f = function([rbm.input], [], updates={rbm.W:cd_updates[rbm.W]}) theano.printing.debugprint(f.maker.env.outputs[0], file=sys.stdout) if __name__ == '__main__': dbn_main() #rbm_main() if 0: class DAA(object): def __init__(self, n_visible= 784, n_hidden= 500, corruption_level = 0.1,\ input = None, shared_W = None, shared_b = None): """ Initialize the dA class by specifying the number of visible units (the dimension d of the input ), the number of hidden units ( the dimension d' of the latent or hidden space ) and the corruption level. The constructor also receives symbolic variables for the input, weights and bias. Such a symbolic variables are useful when, for example the input is the result of some computations, or when weights are shared between the dA and an MLP layer. When dealing with SdAs this always happens, the dA on layer 2 gets as input the output of the dA on layer 1, and the weights of the dA are used in the second stage of training to construct an MLP. :param n_visible: number of visible units :param n_hidden: number of hidden units :param input: a symbolic description of the input or None :param corruption_level: the corruption mechanism picks up randomly this fraction of entries of the input and turns them to 0 """ self.n_visible = n_visible self.n_hidden = n_hidden # create a Theano random generator that gives symbolic random values theano_rng = RandomStreams() if shared_W != None and shared_b != None : self.W = shared_W self.b = shared_b else: # initial values for weights and biases # note : W' was written as `W_prime` and b' as `b_prime` # W is initialized with `initial_W` which is uniformely sampled # from -6./sqrt(n_visible+n_hidden) and 6./sqrt(n_hidden+n_visible) # the output of uniform if converted using asarray to dtype # theano.config.floatX so that the code is runable on GPU initial_W = numpy.asarray( numpy.random.uniform( \ low = -numpy.sqrt(6./(n_hidden+n_visible)), \ high = numpy.sqrt(6./(n_hidden+n_visible)), \ size = (n_visible, n_hidden)), dtype = theano.config.floatX) initial_b = numpy.zeros(n_hidden, dtype = theano.config.floatX) # theano shared variables for weights and biases self.W = theano.shared(value = initial_W, name = "W") self.b = theano.shared(value = initial_b, name = "b") initial_b_prime= numpy.zeros(n_visible) # tied weights, therefore W_prime is W transpose self.W_prime = self.W.T self.b_prime = theano.shared(value = initial_b_prime, name = "b'") # if no input is given, generate a variable representing the input if input == None : # we use a matrix because we expect a minibatch of several examples, # each example being a row self.x = T.matrix(name = 'input') else: self.x = input # Equation (1) # keep 90% of the inputs the same and zero-out randomly selected subset of 10% of the inputs # note : first argument of theano.rng.binomial is the shape(size) of # random numbers that it should produce # second argument is the number of trials # third argument is the probability of success of any trial # # this will produce an array of 0s and 1s where 1 has a # probability of 1 - ``corruption_level`` and 0 with # ``corruption_level`` self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level) * self.x # Equation (2) # note : y is stored as an attribute of the class so that it can be # used later when stacking dAs. self.y = T.nnet.sigmoid(T.dot(self.tilde_x, self.W ) + self.b) # Equation (3) self.z = T.nnet.sigmoid(T.dot(self.y, self.W_prime) + self.b_prime) # Equation (4) # note : we sum over the size of a datapoint; if we are using minibatches, # L will be a vector, with one entry per example in minibatch self.L = - T.sum( self.x*T.log(self.z) + (1-self.x)*T.log(1-self.z), axis=1 ) # note : L is now a vector, where each element is the cross-entropy cost # of the reconstruction of the corresponding example of the # minibatch. We need to compute the average of all these to get # the cost of the minibatch self.cost = T.mean(self.L) self.params = [ self.W, self.b, self.b_prime ] class StackedDAA(DeepLayerwiseModel): """Stacked denoising auto-encoder class (SdA) A stacked denoising autoencoder model is obtained by stacking several dAs. The hidden layer of the dA at layer `i` becomes the input of the dA at layer `i+1`. The first layer dA gets as input the input of the SdA, and the hidden layer of the last dA represents the output. Note that after pretraining, the SdA is dealt with as a normal MLP, the dAs are only used to initialize the weights. """ def __init__(self, n_ins, hidden_layers_sizes, n_outs, corruption_levels, rng, ): """ This class is made to support a variable number of layers. :param train_set_x: symbolic variable pointing to the training dataset :param train_set_y: symbolic variable pointing to the labels of the training dataset :param n_ins: dimension of the input to the sdA :param n_layers_sizes: intermidiate layers size, must contain at least one value :param n_outs: dimension of the output of the network :param corruption_levels: amount of corruption to use for each layer :param rng: numpy random number generator used to draw initial weights :param pretrain_lr: learning rate used during pre-trainnig stage :param finetune_lr: learning rate used during finetune stage """ self.sigmoid_layers = [] self.daa_layers = [] self.pretrain_functions = [] self.params = [] self.n_layers = len(hidden_layers_sizes) if len(hidden_layers_sizes) < 1 : raiseException (' You must have at least one hidden layer ') theano_rng = RandomStreams(rng.randint(2**30)) # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels # The SdA is an MLP, for which all weights of intermidiate layers # are shared with a different denoising autoencoders # We will first construct the SdA as a deep multilayer perceptron, # and when constructing each sigmoidal layer we also construct a # denoising autoencoder that shares weights with that layer, and # compile a training function for that denoising autoencoder for i in xrange( self.n_layers ): # construct the sigmoidal layer sigmoid_layer = SigmoidalLayer(rng, self.layers[-1].output if i else self.x, hidden_layers_sizes[i-1] if i else n_ins, hidden_layers_sizes[i]) daa_layer = DAA(corruption_level = corruption_levels[i], input = sigmoid_layer.input, W = sigmoid_layer.W, b = sigmoid_layer.b) # add the layer to the self.sigmoid_layers.append(sigmoid_layer) self.daa_layers.append(daa_layer) # its arguably a philosophical question... # but we are going to only declare that the parameters of the # sigmoid_layers are parameters of the StackedDAA # the hidden-layer biases in the daa_layers are parameters of those # daa_layers, but not the StackedDAA self.params.extend(sigmoid_layer.params) # We now need to add a logistic layer on top of the MLP self.logistic_regressor = LogisticRegression( input = self.sigmoid_layers[-1].output, n_in = hidden_layers_sizes[-1], n_out = n_outs) self.params.extend(self.logLayer.params) def pretraining_functions(self, train_set_x, batch_size): # compiles update functions for each layer, and # returns them as a list # # Construct a function that trains this dA # compute gradients of layer parameters gparams = T.grad(dA_layer.cost, dA_layer.params) # compute the list of updates updates = {} for param, gparam in zip(dA_layer.params, gparams): updates[param] = param - gparam * pretrain_lr # create a function that trains the dA update_fn = theano.function([index], dA_layer.cost, \ updates = updates, givens = { self.x : train_set_x[index*batch_size:(index+1)*batch_size]}) # collect this function into a list self.pretrain_functions += [update_fn]