Mercurial > ift6266
view deep/convolutional_dae/salah_exp/nist_csda.py @ 401:86d5e583e278
Fixed class number bug
author | humel |
---|---|
date | Wed, 28 Apr 2010 01:25:52 -0400 |
parents | c05680f8c92f |
children |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 import ift6266 import pylearn import numpy import theano import time import pylearn.version import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams import copy import sys import os import os.path from jobman import DD import jobman, jobman.sql from pylearn.io import filetensor from utils import produit_cartesien_jobs from copy import copy from sgd_optimization_new import CSdASgdOptimizer #from ift6266.utils.scalar_series import * from ift6266.utils.seriestables import * import tables from ift6266 import datasets from config import * ''' Function called by jobman upon launching each job Its path is the one given when inserting jobs: see EXPERIMENT_PATH ''' def jobman_entrypoint(state, channel): # record mercurial versions of each package pylearn.version.record_versions(state,[theano,ift6266,pylearn]) # TODO: remove this, bad for number of simultaneous requests on DB channel.save() # For test runs, we don't want to use the whole dataset so # reduce it to fewer elements if asked to. rtt = None #REDUCE_TRAIN_TO = 40000 if state.has_key('reduce_train_to'): rtt = state['reduce_train_to'] elif REDUCE_TRAIN_TO: rtt = REDUCE_TRAIN_TO if state.has_key('decrease_lr'): decrease_lr = state['decrease_lr'] else : decrease_lr = 0 n_ins = 32*32 n_outs = 62 # 10 digits, 26*2 (lower, capitals) examples_per_epoch = 100000#NIST_ALL_TRAIN_SIZE #To be sure variables will not be only in the if statement PATH = '' nom_reptrain = '' nom_serie = "" if state['pretrain_choice'] == 0: nom_serie="series_NIST.h5" elif state['pretrain_choice'] == 1: nom_serie="series_P07.h5" series = create_series(state.num_hidden_layers,nom_serie) print "Creating optimizer with state, ", state optimizer = CSdASgdOptimizer(dataset=datasets.nist_all(), hyperparameters=state, \ n_ins=n_ins, n_outs=n_outs,\ examples_per_epoch=examples_per_epoch, \ series=series, max_minibatches=rtt) parameters=[] #Number of files of P07 used for pretraining nb_file=0 if state['pretrain_choice'] == 0: print('\n\tpretraining with NIST\n') optimizer.pretrain(datasets.nist_all()) elif state['pretrain_choice'] == 1: #To know how many file will be used during pretraining nb_file = int(state['pretraining_epochs_per_layer']) state['pretraining_epochs_per_layer'] = 1 #Only 1 time over the dataset if nb_file >=100: sys.exit("The code does not support this much pretraining epoch (99 max with P07).\n"+ "You have to correct the code (and be patient, P07 is huge !!)\n"+ "or reduce the number of pretraining epoch to run the code (better idea).\n") print('\n\tpretraining with P07') optimizer.pretrain(datasets.nist_P07(min_file=0,max_file=nb_file)) channel.save() #Set some of the parameters used for the finetuning if state.has_key('finetune_set'): finetune_choice=state['finetune_set'] else: finetune_choice=FINETUNE_SET if state.has_key('max_finetuning_epochs'): max_finetune_epoch_NIST=state['max_finetuning_epochs'] else: max_finetune_epoch_NIST=MAX_FINETUNING_EPOCHS if state.has_key('max_finetuning_epochs_P07'): max_finetune_epoch_P07=state['max_finetuning_epochs_P07'] else: max_finetune_epoch_P07=max_finetune_epoch_NIST #Decide how the finetune is done if finetune_choice == 0: print('\n\n\tfinetune with NIST\n\n') optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1,decrease=decrease_lr) channel.save() if finetune_choice == 1: print('\n\n\tfinetune with P07\n\n') optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0,decrease=decrease_lr) channel.save() if finetune_choice == 2: print('\n\n\tfinetune with P07 followed by NIST\n\n') optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20,decrease=decrease_lr) optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=21,decrease=decrease_lr) channel.save() if finetune_choice == 3: print('\n\n\tfinetune with NIST only on the logistic regression on top (but validation on P07).\n\ All hidden units output are input of the logistic regression\n\n') optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1,special=1,decrease=decrease_lr) if finetune_choice==-1: print('\nSERIE OF 4 DIFFERENT FINETUNINGS') print('\n\n\tfinetune with NIST\n\n') sys.stdout.flush() optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1,decrease=decrease_lr) channel.save() print('\n\n\tfinetune with P07\n\n') sys.stdout.flush() optimizer.reload_parameters('params_pretrain.txt') optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0,decrease=decrease_lr) channel.save() print('\n\n\tfinetune with P07 (done earlier) followed by NIST (written here)\n\n') sys.stdout.flush() optimizer.reload_parameters('params_finetune_P07.txt') optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=21,decrease=decrease_lr) channel.save() print('\n\n\tfinetune with NIST only on the logistic regression on top.\n\ All hidden units output are input of the logistic regression\n\n') sys.stdout.flush() optimizer.reload_parameters('params_pretrain.txt') optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1,special=1,decrease=decrease_lr) channel.save() channel.save() return channel.COMPLETE # These Series objects are used to save various statistics # during the training. def create_series(num_hidden_layers, nom_serie): # Replace series we don't want to save with DummySeries, e.g. # series['training_error'] = DummySeries() series = {} basedir = os.getcwd() h5f = tables.openFile(os.path.join(basedir, nom_serie), "w") #REDUCE_EVERY=10 # reconstruction reconstruction_base = \ ErrorSeries(error_name="reconstruction_error", table_name="reconstruction_error", hdf5_file=h5f, index_names=('epoch','minibatch'), title="Reconstruction error (mean over "+str(REDUCE_EVERY)+" minibatches)") series['reconstruction_error'] = \ AccumulatorSeriesWrapper(base_series=reconstruction_base, reduce_every=REDUCE_EVERY) # train training_base = \ ErrorSeries(error_name="training_error", table_name="training_error", hdf5_file=h5f, index_names=('epoch','minibatch'), title="Training error (mean over "+str(REDUCE_EVERY)+" minibatches)") series['training_error'] = \ AccumulatorSeriesWrapper(base_series=training_base, reduce_every=REDUCE_EVERY) # valid and test are not accumulated/mean, saved directly series['validation_error'] = \ ErrorSeries(error_name="validation_error", table_name="validation_error", hdf5_file=h5f, index_names=('epoch','minibatch')) series['test_error'] = \ ErrorSeries(error_name="test_error", table_name="test_error", hdf5_file=h5f, index_names=('epoch','minibatch')) param_names = [] for i in range(num_hidden_layers): param_names += ['layer%d_W'%i, 'layer%d_b'%i, 'layer%d_bprime'%i] param_names += ['logreg_layer_W', 'logreg_layer_b'] # comment out series we don't want to save series['params'] = SharedParamsStatisticsWrapper( new_group_name="params", base_group="/", arrays_names=param_names, hdf5_file=h5f, index_names=('epoch',)) return series # Perform insertion into the Postgre DB based on combination # of hyperparameter values above # (see comment for produit_cartesien_jobs() to know how it works) def jobman_insert_nist(): jobs = produit_cartesien_jobs(JOB_VALS) db = jobman.sql.db(JOBDB) for job in jobs: job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) jobman.sql.insert_dict(job, db) print "inserted" if __name__ == '__main__': args = sys.argv[1:] #if len(args) > 0 and args[0] == 'load_nist': # test_load_nist() if len(args) > 0 and args[0] == 'jobman_insert': jobman_insert_nist() elif len(args) > 0 and args[0] == 'test_jobman_entrypoint': chanmock = DD({'COMPLETE':0,'save':(lambda:None)}) jobman_entrypoint(DD(DEFAULT_HP_NIST), chanmock) else: print "Bad arguments"