Mercurial > ift6266
view deep/stacked_dae/v2/nist_sda.py @ 228:851e7ad4a143
Corrigé une erreur dans la formule de coût modifiée dans stacked_dae, et enlevé des timers dans sgd_optimization
author | fsavard |
---|---|
date | Fri, 12 Mar 2010 10:47:36 -0500 |
parents | acae439d6572 |
children | 02eb98d051fe |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 import ift6266 import pylearn import numpy import theano import time import pylearn.version import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams import copy import sys import os import os.path from jobman import DD import jobman, jobman.sql from pylearn.io import filetensor from utils import produit_cartesien_jobs from sgd_optimization import SdaSgdOptimizer #from ift6266.utils.scalar_series import * from ift6266.utils.seriestables import * import tables ############################################################################## # GLOBALS TEST_CONFIG = False NIST_ALL_LOCATION = '/data/lisa/data/nist/by_class/all' JOBDB = 'postgres://ift6266h10@gershwin/ift6266h10_sandbox_db/fsavard_sda_v2' EXPERIMENT_PATH = "ift6266.deep.stacked_dae.v2.nist_sda.jobman_entrypoint" REDUCE_TRAIN_TO = None MAX_FINETUNING_EPOCHS = 1000 # number of minibatches before taking means for valid error etc. REDUCE_EVERY = 100 if TEST_CONFIG: REDUCE_TRAIN_TO = 1000 MAX_FINETUNING_EPOCHS = 2 REDUCE_EVERY = 10 # Possible values the hyperparameters can take. These are then # combined with produit_cartesien_jobs so we get a list of all # possible combinations, each one resulting in a job inserted # in the jobman DB. JOB_VALS = {'pretraining_lr': [0.1, 0.01],#, 0.001],#, 0.0001], 'pretraining_epochs_per_layer': [10,20], 'hidden_layers_sizes': [300,800], 'corruption_levels': [0.1,0.2,0.3], 'minibatch_size': [20], 'max_finetuning_epochs':[MAX_FINETUNING_EPOCHS], 'finetuning_lr':[0.1, 0.01], #0.001 was very bad, so we leave it out 'num_hidden_layers':[2,3]} # Just useful for tests... minimal number of epochs DEFAULT_HP_NIST = DD({'finetuning_lr':0.1, 'pretraining_lr':0.1, 'pretraining_epochs_per_layer':2, 'max_finetuning_epochs':2, 'hidden_layers_sizes':800, 'corruption_levels':0.2, 'minibatch_size':20, 'reduce_train_to':30000, 'num_hidden_layers':1}) ''' Function called by jobman upon launching each job Its path is the one given when inserting jobs: see EXPERIMENT_PATH ''' def jobman_entrypoint(state, channel): # record mercurial versions of each package pylearn.version.record_versions(state,[theano,ift6266,pylearn]) # TODO: remove this, bad for number of simultaneous requests on DB channel.save() workingdir = os.getcwd() print "Will load NIST" nist = NIST(minibatch_size=20) print "NIST loaded" # For test runs, we don't want to use the whole dataset so # reduce it to fewer elements if asked to. rtt = None if state.has_key('reduce_train_to'): rtt = state['reduce_train_to'] elif REDUCE_TRAIN_TO: rtt = REDUCE_TRAIN_TO if rtt: print "Reducing training set to "+str(rtt)+ " examples" nist.reduce_train_set(rtt) train,valid,test = nist.get_tvt() dataset = (train,valid,test) n_ins = 32*32 n_outs = 62 # 10 digits, 26*2 (lower, capitals) series = create_series(state.num_hidden_layers) print "Creating optimizer with state, ", state optimizer = SdaSgdOptimizer(dataset=dataset, hyperparameters=state, \ n_ins=n_ins, n_outs=n_outs,\ input_divider=255.0, series=series) optimizer.pretrain() channel.save() optimizer.finetune() channel.save() return channel.COMPLETE # These Series objects are used to save various statistics # during the training. def create_series(num_hidden_layers): # Replace series we don't want to save with DummySeries, e.g. # series['training_error'] = DummySeries() series = {} basedir = os.getcwd() h5f = tables.openFile(os.path.join(basedir, "series.h5"), "w") # reconstruction reconstruction_base = \ ErrorSeries(error_name="reconstruction_error", table_name="reconstruction_error", hdf5_file=h5f, index_names=('epoch','minibatch'), title="Reconstruction error (mean over "+str(REDUCE_EVERY)+" minibatches)") series['reconstruction_error'] = \ AccumulatorSeriesWrapper(base_series=reconstruction_base, reduce_every=REDUCE_EVERY) # train training_base = \ ErrorSeries(error_name="training_error", table_name="training_error", hdf5_file=h5f, index_names=('epoch','minibatch'), title="Training error (mean over "+str(REDUCE_EVERY)+" minibatches)") series['training_error'] = \ AccumulatorSeriesWrapper(base_series=training_base, reduce_every=REDUCE_EVERY) # valid and test are not accumulated/mean, saved directly series['validation_error'] = \ ErrorSeries(error_name="validation_error", table_name="validation_error", hdf5_file=h5f, index_names=('epoch','minibatch')) series['test_error'] = \ ErrorSeries(error_name="test_error", table_name="test_error", hdf5_file=h5f, index_names=('epoch','minibatch')) param_names = [] for i in range(num_hidden_layers): param_names += ['layer%d_W'%i, 'layer%d_b'%i, 'layer%d_bprime'%i] param_names += ['logreg_layer_W', 'logreg_layer_b'] # comment out series we don't want to save series['params'] = SharedParamsStatisticsWrapper( new_group_name="params", base_group="/", arrays_names=param_names, hdf5_file=h5f, index_names=('epoch',)) return series # Perform insertion into the Postgre DB based on combination # of hyperparameter values above # (see comment for produit_cartesien_jobs() to know how it works) def jobman_insert_nist(): jobs = produit_cartesien_jobs(JOB_VALS) db = jobman.sql.db(JOBDB) for job in jobs: job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) jobman.sql.insert_dict(job, db) print "inserted" class NIST: def __init__(self, minibatch_size, basepath=None, reduce_train_to=None): global NIST_ALL_LOCATION self.minibatch_size = minibatch_size self.basepath = basepath and basepath or NIST_ALL_LOCATION self.set_filenames() # arrays of 2 elements: .x, .y self.train = [None, None] self.test = [None, None] self.load_train_test() self.valid = [[], []] self.split_train_valid() if reduce_train_to: self.reduce_train_set(reduce_train_to) def get_tvt(self): return self.train, self.valid, self.test def set_filenames(self): self.train_files = ['all_train_data.ft', 'all_train_labels.ft'] self.test_files = ['all_test_data.ft', 'all_test_labels.ft'] def load_train_test(self): self.load_data_labels(self.train_files, self.train) self.load_data_labels(self.test_files, self.test) def load_data_labels(self, filenames, pair): for i, fn in enumerate(filenames): f = open(os.path.join(self.basepath, fn)) pair[i] = filetensor.read(f) f.close() def reduce_train_set(self, max): self.train[0] = self.train[0][:max] self.train[1] = self.train[1][:max] if max < len(self.test[0]): for ar in (self.test, self.valid): ar[0] = ar[0][:max] ar[1] = ar[1][:max] def split_train_valid(self): test_len = len(self.test[0]) new_train_x = self.train[0][:-test_len] new_train_y = self.train[1][:-test_len] self.valid[0] = self.train[0][-test_len:] self.valid[1] = self.train[1][-test_len:] self.train[0] = new_train_x self.train[1] = new_train_y def test_load_nist(): print "Will load NIST" import time t1 = time.time() nist = NIST(20) t2 = time.time() print "NIST loaded. time delta = ", t2-t1 tr,v,te = nist.get_tvt() print "Lenghts: ", len(tr[0]), len(v[0]), len(te[0]) raw_input("Press any key") if __name__ == '__main__': import sys args = sys.argv[1:] if len(args) > 0 and args[0] == 'load_nist': test_load_nist() elif len(args) > 0 and args[0] == 'jobman_insert': jobman_insert_nist() elif len(args) > 0 and args[0] == 'test_jobman_entrypoint': chanmock = DD({'COMPLETE':0,'save':(lambda:None)}) jobman_entrypoint(DEFAULT_HP_NIST, chanmock) else: print "Bad arguments"