Mercurial > ift6266
view deep/stacked_dae/v_guillaume/sgd_optimization.py @ 580:83da863b924d
minor
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Sun, 08 Aug 2010 13:41:46 -0400 |
parents | 0ca069550abd |
children |
line wrap: on
line source
#!/usr/bin/python # -*- coding: utf-8 -*- # coding: utf-8 # Generic SdA optimization loop, adapted from the deeplearning.net tutorial import numpy import theano import time import datetime import theano.tensor as T import sys #import pickle import cPickle from jobman import DD import jobman, jobman.sql from copy import copy from stacked_dae import SdA from ift6266.utils.seriestables import * #For test purpose only buffersize=1000 default_series = { \ 'reconstruction_error' : DummySeries(), 'training_error' : DummySeries(), 'validation_error' : DummySeries(), 'test_error' : DummySeries(), 'params' : DummySeries() } def itermax(iter, max): for i,it in enumerate(iter): if i >= max: break yield it class SdaSgdOptimizer: def __init__(self, dataset_name, dataset, hyperparameters, n_ins, n_outs, examples_per_epoch, series=default_series, max_minibatches=None): self.dataset_name = dataset_name self.dataset = dataset self.hp = hyperparameters self.n_ins = n_ins self.n_outs = n_outs self.parameters_pre=[] if (self.dataset_name == "upper"): self.class_offset = 10 elif (self.dataset_name == "lower"): self.class_offset = 36 else: self.class_offset = 0 self.max_minibatches = max_minibatches print "SdaSgdOptimizer, max_minibatches =", max_minibatches self.ex_per_epoch = examples_per_epoch self.mb_per_epoch = examples_per_epoch / self.hp.minibatch_size self.series = series self.rng = numpy.random.RandomState(1234) self.init_classifier() sys.stdout.flush() def init_classifier(self): print "Constructing classifier" # we don't want to save arrays in DD objects, so # we recreate those arrays here nhl = self.hp.num_hidden_layers layers_sizes = [self.hp.hidden_layers_sizes] * nhl corruption_levels = [self.hp.corruption_levels] * nhl # construct the stacked denoising autoencoder class self.classifier = SdA( \ batch_size = self.hp.minibatch_size, \ n_ins= self.n_ins, \ hidden_layers_sizes = layers_sizes, \ n_outs = self.n_outs, \ corruption_levels = corruption_levels,\ rng = self.rng,\ pretrain_lr = self.hp.pretraining_lr, \ finetune_lr = self.hp.finetuning_lr) #theano.printing.pydotprint(self.classifier.pretrain_functions[0], "function.graph") sys.stdout.flush() def train(self): self.pretrain(self.dataset) self.finetune(self.dataset) def pretrain(self,dataset,decrease=0): print "STARTING PRETRAINING, time = ", datetime.datetime.now() sys.stdout.flush() un_fichier=int(819200.0/self.hp.minibatch_size) #Number of batches in a P07 file start_time = time.clock() ######## This is hardcoaded. THe 0.95 parameter is hardcoaded and can be changed at will ### #Set the decreasing rate of the learning rate. We want the final learning rate to #be 5% of the original learning rate. The decreasing factor is linear decreasing = (decrease*self.hp.pretraining_lr)/float(self.hp.pretraining_epochs_per_layer*800000/self.hp.minibatch_size) ## Pre-train layer-wise for i in xrange(self.classifier.n_layers): # go through pretraining epochs #To reset the learning rate to his original value learning_rate=self.hp.pretraining_lr for epoch in xrange(self.hp.pretraining_epochs_per_layer): # go through the training set batch_index=0 count=0 num_files=0 for x,y in dataset.train(self.hp.minibatch_size): y = y - self.class_offset c = self.classifier.pretrain_functions[i](x,learning_rate) count +=1 self.series["reconstruction_error"].append((epoch, batch_index), c) batch_index+=1 #If we need to decrease the learning rate for the pretrain if decrease != 0: learning_rate -= decreasing # useful when doing tests if self.max_minibatches and batch_index >= self.max_minibatches: break #When we pass through the data only once (the case with P07) #There is approximately 800*1024=819200 examples per file (1k per example and files are 800M) if self.hp.pretraining_epochs_per_layer == 1 and count%un_fichier == 0: print 'Pre-training layer %i, epoch %d, cost '%(i,num_files),c num_files+=1 sys.stdout.flush() self.series['params'].append((num_files,), self.classifier.all_params) #When NIST is used if self.hp.pretraining_epochs_per_layer > 1: print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c sys.stdout.flush() self.series['params'].append((epoch,), self.classifier.all_params) end_time = time.clock() print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) self.hp.update({'pretraining_time': end_time-start_time}) sys.stdout.flush() #To be able to load them later for tests on finetune self.parameters_pre=[copy(x.value) for x in self.classifier.params] f = open('params_pretrain.txt', 'w') cPickle.dump(self.parameters_pre,f,protocol=-1) f.close() def finetune(self,dataset,dataset_test,num_finetune,ind_test,special=0,decrease=0): if special != 0 and special != 1: sys.exit('Bad value for variable special. Must be in {0,1}') print "STARTING FINETUNING, time = ", datetime.datetime.now() minibatch_size = self.hp.minibatch_size if ind_test == 0 or ind_test == 20: nom_test = "NIST" nom_train="P07" else: nom_test = "P07" nom_train = "NIST" # create a function to compute the mistakes that are made by the model # on the validation set, or testing set test_model = \ theano.function( [self.classifier.x,self.classifier.y], self.classifier.errors) # givens = { # self.classifier.x: ensemble_x, # self.classifier.y: ensemble_y]}) validate_model = \ theano.function( [self.classifier.x,self.classifier.y], self.classifier.errors) # givens = { # self.classifier.x: , # self.classifier.y: ]}) # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2. # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(self.mb_per_epoch, patience/2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch if self.max_minibatches and validation_frequency > self.max_minibatches: validation_frequency = self.max_minibatches / 2 best_params = None best_validation_loss = float('inf') test_score = 0. start_time = time.clock() done_looping = False epoch = 0 total_mb_index = 0 minibatch_index = 0 parameters_finetune=[] if ind_test == 21: learning_rate = self.hp.finetuning_lr / 10.0 else: learning_rate = self.hp.finetuning_lr #The initial finetune lr while (epoch < num_finetune) and (not done_looping): epoch = epoch + 1 for x,y in dataset.train(minibatch_size,bufsize=buffersize): minibatch_index += 1 y = y - self.class_offset if special == 0: cost_ij = self.classifier.finetune(x,y,learning_rate) elif special == 1: cost_ij = self.classifier.finetune2(x,y) total_mb_index += 1 self.series["training_error"].append((epoch, minibatch_index), cost_ij) if (total_mb_index+1) % validation_frequency == 0: #minibatch_index += 1 #The validation set is always NIST (we want the model to be good on NIST) if ind_test == 0 | ind_test == 20: iter=dataset_test.valid(minibatch_size,bufsize=buffersize) else: iter = dataset.valid(minibatch_size,bufsize=buffersize) if self.max_minibatches: iter = itermax(iter, self.max_minibatches) validation_losses = [validate_model(x,y - self.class_offset) for x,y in iter] this_validation_loss = numpy.mean(validation_losses) self.series["validation_error"].\ append((epoch, minibatch_index), this_validation_loss*100.) print('epoch %i, minibatch %i, validation error on NIST : %f %%' % \ (epoch, minibatch_index+1, \ this_validation_loss*100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold : patience = max(patience, total_mb_index * patience_increase) # save best validation score, iteration number and parameters best_validation_loss = this_validation_loss best_iter = total_mb_index parameters_finetune=[copy(x.value) for x in self.classifier.params] # test it on the test set iter = dataset.test(minibatch_size,bufsize=buffersize) if self.max_minibatches: iter = itermax(iter, self.max_minibatches) test_losses = [test_model(x,y - self.class_offset) for x,y in iter] test_score = numpy.mean(test_losses) #test it on the second test set iter2 = dataset_test.test(minibatch_size,bufsize=buffersize) if self.max_minibatches: iter2 = itermax(iter2, self.max_minibatches) test_losses2 = [test_model(x,y - self.class_offset) for x,y in iter2] test_score2 = numpy.mean(test_losses2) self.series["test_error"].\ append((epoch, minibatch_index), test_score*100.) print((' epoch %i, minibatch %i, test error on dataset %s (train data) of best ' 'model %f %%') % (epoch, minibatch_index+1,nom_train, test_score*100.)) print((' epoch %i, minibatch %i, test error on dataset %s of best ' 'model %f %%') % (epoch, minibatch_index+1,nom_test, test_score2*100.)) if patience <= total_mb_index: done_looping = True break #to exit the FOR loop sys.stdout.flush() # useful when doing tests if self.max_minibatches and minibatch_index >= self.max_minibatches: break if decrease == 1: if (ind_test == 21 & epoch % 100 == 0) | ind_test == 20 | (ind_test == 1 & epoch % 100 == 0) : learning_rate /= 2 #divide the learning rate by 2 for each new epoch of P07 (or 100 of NIST) self.series['params'].append((epoch,), self.classifier.all_params) if done_looping == True: #To exit completly the fine-tuning break #to exit the WHILE loop end_time = time.clock() self.hp.update({'finetuning_time':end_time-start_time,\ 'best_validation_error':best_validation_loss,\ 'test_score':test_score, 'num_finetuning_epochs':epoch}) print(('\nOptimization complete with best validation score of %f %%,' 'with test performance %f %% on dataset %s ') % (best_validation_loss * 100., test_score*100.,nom_train)) print(('The test score on the %s dataset is %f')%(nom_test,test_score2*100.)) print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.)) sys.stdout.flush() #Save a copy of the parameters in a file to be able to get them in the future if special == 1: #To keep a track of the value of the parameters f = open('params_finetune_stanford.txt', 'w') cPickle.dump(parameters_finetune,f,protocol=-1) f.close() elif ind_test == 0 | ind_test == 20: #To keep a track of the value of the parameters f = open('params_finetune_P07.txt', 'w') cPickle.dump(parameters_finetune,f,protocol=-1) f.close() elif ind_test== 1: #For the run with 2 finetunes. It will be faster. f = open('params_finetune_NIST.txt', 'w') cPickle.dump(parameters_finetune,f,protocol=-1) f.close() elif ind_test== 21: #To keep a track of the value of the parameters f = open('params_finetune_P07_then_NIST.txt', 'w') cPickle.dump(parameters_finetune,f,protocol=-1) f.close() #Set parameters like they where right after pre-train or finetune def reload_parameters(self,which): #self.parameters_pre=pickle.load('params_pretrain.txt') f = open(which) self.parameters_pre=cPickle.load(f) f.close() for idx,x in enumerate(self.parameters_pre): if x.dtype=='float64': self.classifier.params[idx].value=theano._asarray(copy(x),dtype=theano.config.floatX) else: self.classifier.params[idx].value=copy(x) def training_error(self,dataset): # create a function to compute the mistakes that are made by the model # on the validation set, or testing set test_model = \ theano.function( [self.classifier.x,self.classifier.y], self.classifier.errors) iter2 = dataset.train(self.hp.minibatch_size,bufsize=buffersize) train_losses2 = [test_model(x,y - self.class_offset) for x,y in iter2] train_score2 = numpy.mean(train_losses2) print "Training error is: " + str(train_score2)