Mercurial > ift6266
view utils/scalar_series/test_series.py @ 248:7e6fecabb656
Optimized the call of ConvOp by specifying additional parameters. Specified image shape of the da_conv layer.
author | humel |
---|---|
date | Tue, 16 Mar 2010 14:46:25 -0400 |
parents | d364a130b221 |
children |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 import sys import tempfile import os.path import os import numpy from series import BaseSeries, AccumulatorSeries, SeriesContainer, BasicStatsSeries, SeriesMultiplexer, SeriesList, ParamsArrayStats BASEDIR = tempfile.mkdtemp() def tempname(): file = tempfile.NamedTemporaryFile(dir=BASEDIR) filepath = file.name return os.path.split(filepath) def tempdir(): wholepath = os.path.dirname(tempfile.mkdtemp(dir=BASEDIR)) # split again, interpreting the last directory as a filename return os.path.split(wholepath) def tempseries(type='f', flush_every=1): dir, filename = tempname() s = BaseSeries(name=filename, directory=dir, type=type, flush_every=flush_every) return s def test_Series_storeload(): s = tempseries() s.append(12.0) s.append_list([13.0,14.0,15.0]) s2 = BaseSeries(name=s.name, directory=s.directory, flush_every=15) # also test if elements stored before load_from_file (and before a flush) # are deleted (or array is restarted from scratch... both work) s2.append(10.0) s2.append_list([30.0,40.0]) s2.load_from_file() assert s2.tolist() == [12.0,13.0,14.0,15.0] def test_AccumulatorSeries_mean(): dir, filename = tempname() s = AccumulatorSeries(reduce_every=15, mean=True, name=filename, directory=dir) for i in range(50): s.append(i) assert s.tolist() == [7.0,22.0,37.0] def test_BasicStatsSeries_commoncase(): a1 = numpy.arange(25).reshape((5,5)) a2 = numpy.arange(40).reshape((8,5)) parent_dir, dir = tempdir() bss = BasicStatsSeries(parent_directory=parent_dir, name=dir) bss.append(a1) bss.append(a2) assert bss.means.tolist() == [12.0, 19.5] assert bss.mins.tolist() == [0.0, 0.0] assert bss.maxes.tolist() == [24.0, 39.0] assert (bss.stds.tolist()[0] - 7.211102) < 1e-3 assert (bss.stds.tolist()[1] - 11.54339) < 1e-3 # try to reload bss2 = BasicStatsSeries(parent_directory=parent_dir, name=dir) bss2.load_from_directory() assert bss2.means.tolist() == [12.0, 19.5] assert bss2.mins.tolist() == [0.0, 0.0] assert bss2.maxes.tolist() == [24.0, 39.0] assert (bss2.stds.tolist()[0] - 7.211102) < 1e-3 assert (bss2.stds.tolist()[1] - 11.54339) < 1e-3 def test_BasicStatsSeries_reload(): a1 = numpy.arange(25).reshape((5,5)) a2 = numpy.arange(40).reshape((8,5)) parent_dir, dir = tempdir() bss = BasicStatsSeries(parent_directory=parent_dir, name=dir) bss.append(a1) bss.append(a2) # try to reload bss2 = BasicStatsSeries(parent_directory=parent_dir, name=dir) bss2.load_from_directory() assert bss2.means.tolist() == [12.0, 19.5] assert bss2.mins.tolist() == [0.0, 0.0] assert bss2.maxes.tolist() == [24.0, 39.0] assert (bss2.stds.tolist()[0] - 7.211102) < 1e-3 assert (bss2.stds.tolist()[1] - 11.54339) < 1e-3 def test_BasicStatsSeries_withaccumulator(): a1 = numpy.arange(25).reshape((5,5)) a2 = numpy.arange(40).reshape((8,5)) a3 = numpy.arange(20).reshape((4,5)) a4 = numpy.arange(48).reshape((6,8)) parent_dir, dir = tempdir() sc = AccumulatorSeries.series_constructor(reduce_every=2, mean=False) bss = BasicStatsSeries(parent_directory=parent_dir, name=dir, series_constructor=sc) bss.append(a1) bss.append(a2) bss.append(a3) bss.append(a4) assert bss.means.tolist() == [31.5, 33.0] def test_SeriesList_withbasicstats(): dir = tempfile.mkdtemp(dir=BASEDIR) bscstr = BasicStatsSeries.series_constructor() slist = SeriesList(num_elements=5, name="foo", directory=dir, series_constructor=bscstr) for i in range(10): # 10 elements in each list curlist = [] for j in range(5): # 5 = num_elements, ie. number of list to append to dist = numpy.arange(i*j, i*j+10) curlist.append(dist) slist.append(curlist) slist2 = SeriesList(num_elements=5, name="foo", directory=dir, series_constructor=bscstr) slist2.load_from_files() l1 = slist2._subseries[0].means.tolist() l2 = slist2._subseries[4].means.tolist() print l1 print l2 assert l1 == [4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5] assert l2 == [4.5, 8.5, 12.5, 16.5, 20.5, 24.5, 28.5, 32.5, 36.5, 40.5] # same test as above, just with the shortcut def test_ParamsArrayStats_reload(): dir = tempfile.mkdtemp(dir=BASEDIR) slist = ParamsArrayStats(5, name="foo", directory=dir) for i in range(10): # 10 elements in each list curlist = [] for j in range(5): # 5 = num_elements, ie. number of list to append to dist = numpy.arange(i*j, i*j+10) curlist.append(dist) slist.append(curlist) slist2 = ParamsArrayStats(5, name="foo", directory=dir) slist2.load_from_files() l1 = slist2._subseries[0].means.tolist() l2 = slist2._subseries[4].means.tolist() print l1 print l2 assert l1 == [4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5] assert l2 == [4.5, 8.5, 12.5, 16.5, 20.5, 24.5, 28.5, 32.5, 36.5, 40.5] def manual_BasicStatsSeries_graph(): parent_dir, dir = tempdir() bss = BasicStatsSeries(parent_directory=parent_dir, name=dir) for i in range(50): bss.append(1.0/numpy.arange(i*5, i*5+5)) bss.graph() #if __name__ == '__main__': # import pylab # manual_BasicStatsSeries_graph() # pylab.show()