Mercurial > ift6266
view data_generation/pipeline/pipeline.py @ 346:7bc555cc9aab
Ajouté dans set_batches : choix de la classe principale
author | Guillaume Sicard <guitch21@gmail.com> |
---|---|
date | Mon, 19 Apr 2010 07:09:44 -0400 |
parents | 6d16a2bf142b |
children |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 from __future__ import with_statement # This is intended to be run as a GIMP script #from gimpfu import * import sys, os, getopt import numpy import ift6266.data_generation.transformations.filetensor as ft import random import copy # To debug locally, also call with -s 100 (to stop after ~100) # (otherwise we allocate all needed memory, might be loonnng and/or crash # if, lucky like me, you have an age-old laptop creaking from everywhere) DEBUG = False DEBUG_X = False if DEBUG: DEBUG_X = False # Debug under X (pylab.show()) DEBUG_IMAGES_PATH = None if DEBUG: # UNTESTED YET # To avoid loading NIST if you don't have it handy # (use with debug_images_iterator(), see main()) # To use NIST, leave as = None DEBUG_IMAGES_PATH = None#'/home/francois/Desktop/debug_images' # Directory where to dump images to visualize results # (create it, otherwise it'll crash) DEBUG_OUTPUT_DIR = 'debug_out' DEFAULT_NIST_PATH = '/data/lisa/data/ift6266h10/train_data.ft' DEFAULT_LABEL_PATH = '/data/lisa/data/ift6266h10/train_labels.ft' DEFAULT_OCR_PATH = '/data/lisa/data/ocr_breuel/filetensor/unlv-corrected-2010-02-01-shuffled.ft' DEFAULT_OCRLABEL_PATH = '/data/lisa/data/ocr_breuel/filetensor/unlv-corrected-2010-02-01-labels-shuffled.ft' ARGS_FILE = os.environ['PIPELINE_ARGS_TMPFILE'] # PARSE COMMAND LINE ARGUMENTS def get_argv(): with open(ARGS_FILE) as f: args = [l.rstrip() for l in f.readlines()] return args def usage(): print ''' Usage: run_pipeline.sh [-m ...] [-z ...] [-o ...] [-p ...] -m, --max-complexity: max complexity to generate for an image -z, --probability-zero: probability of using complexity=0 for an image -o, --output-file: full path to file to use for output of images -p, --params-output-file: path to file to output params to -x, --labels-output-file: path to file to output labels to -f, --data-file: path to filetensor (.ft) data file (NIST) -l, --label-file: path to filetensor (.ft) labels file (NIST labels) -c, --ocr-file: path to filetensor (.ft) data file (OCR) -d, --ocrlabel-file: path to filetensor (.ft) labels file (OCR labels) -a, --prob-font: probability of using a raw font image -b, --prob-captcha: probability of using a captcha image -g, --prob-ocr: probability of using an ocr image -y, --seed: the job seed -t, --type: [default: 0:full transformations], 1:Nist-friendly transformations ''' try: opts, args = getopt.getopt(get_argv(), "r:m:z:o:p:x:s:f:l:c:d:a:b:g:y:t:", ["reload","max-complexity=", "probability-zero=", "output-file=", "params-output-file=", "labels-output-file=", "stop-after=", "data-file=", "label-file=", "ocr-file=", "ocrlabel-file=", "prob-font=", "prob-captcha=", "prob-ocr=", "seed=","type="]) except getopt.GetoptError, err: # print help information and exit: print str(err) # will print something like "option -a not recognized" usage() pdb.gimp_quit(0) sys.exit(2) for o, a in opts: if o in ('-y','--seed'): random.seed(int(a)) numpy.random.seed(int(a)) type_pipeline = 0 for o, a in opts: if o in ('-t','--type'): type_pipeline = int(a) if DEBUG_X: import pylab pylab.ion() from ift6266.data_generation.transformations.PoivreSel import PoivreSel from ift6266.data_generation.transformations.thick import Thick from ift6266.data_generation.transformations.BruitGauss import BruitGauss from ift6266.data_generation.transformations.DistorsionGauss import DistorsionGauss from ift6266.data_generation.transformations.PermutPixel import PermutPixel from ift6266.data_generation.transformations.gimp_script import GIMP1 from ift6266.data_generation.transformations.Rature import Rature from ift6266.data_generation.transformations.contrast import Contrast from ift6266.data_generation.transformations.local_elastic_distortions import LocalElasticDistorter from ift6266.data_generation.transformations.slant import Slant from ift6266.data_generation.transformations.Occlusion import Occlusion from ift6266.data_generation.transformations.add_background_image import AddBackground from ift6266.data_generation.transformations.affine_transform import AffineTransformation from ift6266.data_generation.transformations.ttf2jpg import ttf2jpg from ift6266.data_generation.transformations.pycaptcha.Facade import generateCaptcha if DEBUG: from visualizer import Visualizer # Either put the visualizer as in the MODULES_INSTANCES list # after each module you want to visualize, or in the # AFTER_EACH_MODULE_HOOK list (but not both, it's redundant) VISUALIZER = Visualizer(to_dir=DEBUG_OUTPUT_DIR, on_screen=False) ###---------------------order of transformation module if type_pipeline == 0: MODULE_INSTANCES = [Slant(),Thick(),AffineTransformation(),LocalElasticDistorter(),GIMP1(),Rature(),Occlusion(), PermutPixel(),DistorsionGauss(),AddBackground(), PoivreSel(), BruitGauss(), Contrast()] stop_idx = 0 if type_pipeline == 1: MODULE_INSTANCES = [Slant(),Thick(),AffineTransformation(),LocalElasticDistorter(),GIMP1(False),Rature(),Occlusion(), PermutPixel(),DistorsionGauss(),AddBackground(), PoivreSel(), BruitGauss(), Contrast()] stop_idx = 5 #we disable transformation corresponding to MODULE_INSTANCES[stop_idx:] but we still need to apply them on dummy images #in order to be sure to have the same random generator state than with the default pipeline. #This is not optimal (we do more calculus than necessary) but it is a quick hack to produce similar results than previous generation # These should have a "after_transform_callback(self, image)" method # (called after each call to transform_image in a module) AFTER_EACH_MODULE_HOOK = [] if DEBUG: AFTER_EACH_MODULE_HOOK = [VISUALIZER] # These should have a "end_transform_callback(self, final_image" method # (called after all modules have been called) END_TRANSFORM_HOOK = [] if DEBUG: END_TRANSFORM_HOOK = [VISUALIZER] class Pipeline(): def __init__(self, modules, num_img, image_size=(32,32)): self.modules = modules self.num_img = num_img self.num_params_stored = 0 self.image_size = image_size self.init_memory() def init_num_params_stored(self): # just a dummy call to regenerate_parameters() to get the # real number of params (only those which are stored) self.num_params_stored = 0 for m in self.modules: self.num_params_stored += len(m.regenerate_parameters(0.0)) def init_memory(self): self.init_num_params_stored() total = self.num_img num_px = self.image_size[0] * self.image_size[1] self.res_data = numpy.empty((total, num_px), dtype=numpy.uint8) # +1 to store complexity self.params = numpy.empty((total, self.num_params_stored+len(self.modules))) self.res_labels = numpy.empty(total, dtype=numpy.int32) def run(self, img_iterator, complexity_iterator): img_size = self.image_size should_hook_after_each = len(AFTER_EACH_MODULE_HOOK) != 0 should_hook_at_the_end = len(END_TRANSFORM_HOOK) != 0 for img_no, (img, label) in enumerate(img_iterator): sys.stdout.flush() global_idx = img_no img = img.reshape(img_size) param_idx = 0 mod_idx = 0 for mod in self.modules: # This used to be done _per batch_, # ie. out of the "for img" loop complexity = complexity_iterator.next() #better to do a complexity sampling for each transformations in order to have more variability #otherwise a lot of images similar to the source are generated (i.e. when complexity is close to 0 (1/8 of the time)) #we need to save the complexity of each transformations and the sum of these complexity is a good indicator of the overall #complexity self.params[global_idx, mod_idx] = complexity mod_idx += 1 p = mod.regenerate_parameters(complexity) self.params[global_idx, param_idx+len(self.modules):param_idx+len(p)+len(self.modules)] = p param_idx += len(p) if not(stop_idx) or stop_idx > mod_idx: img = mod.transform_image(img) else: tmp = mod.transform_image(copy.copy(img)) #this is done to be sure to have the same global random generator state #we don't apply the transformation on the original image but on a copy in case of in-place transformations if should_hook_after_each: for hook in AFTER_EACH_MODULE_HOOK: hook.after_transform_callback(img) self.res_data[global_idx] = \ img.reshape((img_size[0] * img_size[1],))*255 self.res_labels[global_idx] = label if should_hook_at_the_end: for hook in END_TRANSFORM_HOOK: hook.end_transform_callback(img) def write_output(self, output_file_path, params_output_file_path, labels_output_file_path): with open(output_file_path, 'wb') as f: ft.write(f, self.res_data) #if type_pipeline == 0: #only needed for type 0 pipeline numpy.save(params_output_file_path, self.params) with open(labels_output_file_path, 'wb') as f: ft.write(f, self.res_labels) ############################################################################## # COMPLEXITY ITERATORS # They're called once every img, to get the complexity to use for that img # they must be infinite (should never throw StopIteration when calling next()) # probability of generating 0 complexity, otherwise # uniform over 0.0-max_complexity def range_complexity_iterator(probability_zero, max_complexity): assert max_complexity <= 1.0 n = numpy.random.uniform(0.0, 1.0) n = 2.0 #hack to bug fix, having a min complexity is not necessary and we need the same seed... while True: if n < probability_zero: yield 0.0 else: yield numpy.random.uniform(0.0, max_complexity) ############################################################################## # DATA ITERATORS # They can be used to interleave different data sources etc. ''' # Following code (DebugImages and iterator) is untested def load_image(filepath): _RGB_TO_GRAYSCALE = [0.3, 0.59, 0.11, 0.0] img = Image.open(filepath) img = numpy.asarray(img) if len(img.shape) > 2: img = (img * _RGB_TO_GRAYSCALE).sum(axis=2) return (img / 255.0).astype('float') class DebugImages(): def __init__(self, images_dir_path): import glob, os.path self.filelist = glob.glob(os.path.join(images_dir_path, "*.png")) def debug_images_iterator(debug_images): for path in debug_images.filelist: yield load_image(path) ''' class NistData(): def __init__(self, nist_path, label_path, ocr_path, ocrlabel_path): self.train_data = open(nist_path, 'rb') self.train_labels = open(label_path, 'rb') self.dim = tuple(ft._read_header(self.train_data)[3]) # in order to seek to the beginning of the file self.train_data.close() self.train_data = open(nist_path, 'rb') self.ocr_data = open(ocr_path, 'rb') self.ocr_labels = open(ocrlabel_path, 'rb') # cet iterator load tout en ram def nist_supp_iterator(nist, prob_font, prob_captcha, prob_ocr, num_img): img = ft.read(nist.train_data) labels = ft.read(nist.train_labels) if prob_ocr: ocr_img = ft.read(nist.ocr_data) ocr_labels = ft.read(nist.ocr_labels) ttf = ttf2jpg() L = [chr(ord('0')+x) for x in range(10)] + [chr(ord('A')+x) for x in range(26)] + [chr(ord('a')+x) for x in range(26)] for i in xrange(num_img): r = numpy.random.rand() if r <= prob_font: yield ttf.generate_image() elif r <=prob_font + prob_captcha: (arr, charac) = generateCaptcha(0,1) yield arr.astype(numpy.float32)/255, L.index(charac[0]) elif r <= prob_font + prob_captcha + prob_ocr: j = numpy.random.randint(len(ocr_labels)) yield ocr_img[j].astype(numpy.float32)/255, ocr_labels[j] else: j = numpy.random.randint(len(labels)) yield img[j].astype(numpy.float32)/255, labels[j] # Mostly for debugging, for the moment, just to see if we can # reload the images and parameters. def reload(output_file_path, params_output_file_path): images_ft = open(output_file_path, 'rb') images_ft_dim = tuple(ft._read_header(images_ft)[3]) print "Images dimensions: ", images_ft_dim params = numpy.load(params_output_file_path) print "Params dimensions: ", params.shape print params ############################################################################## # MAIN # Might be called locally or through dbidispatch. In all cases it should be # passed to the GIMP executable to be able to use GIMP filters. # Ex: def _main(): #global DEFAULT_NIST_PATH, DEFAULT_LABEL_PATH, DEFAULT_OCR_PATH, DEFAULT_OCRLABEL_PATH #global getopt, get_argv max_complexity = 0.5 # default probability_zero = 0.1 # default output_file_path = None params_output_file_path = None labels_output_file_path = None nist_path = DEFAULT_NIST_PATH label_path = DEFAULT_LABEL_PATH ocr_path = DEFAULT_OCR_PATH ocrlabel_path = DEFAULT_OCRLABEL_PATH prob_font = 0.0 prob_captcha = 0.0 prob_ocr = 0.0 stop_after = None reload_mode = False for o, a in opts: if o in ('-m', '--max-complexity'): max_complexity = float(a) assert max_complexity >= 0.0 and max_complexity <= 1.0 elif o in ('-r', '--reload'): reload_mode = True elif o in ("-z", "--probability-zero"): probability_zero = float(a) assert probability_zero >= 0.0 and probability_zero <= 1.0 elif o in ("-o", "--output-file"): output_file_path = a elif o in ('-p', "--params-output-file"): params_output_file_path = a elif o in ('-x', "--labels-output-file"): labels_output_file_path = a elif o in ('-s', "--stop-after"): stop_after = int(a) elif o in ('-f', "--data-file"): nist_path = a elif o in ('-l', "--label-file"): label_path = a elif o in ('-c', "--ocr-file"): ocr_path = a elif o in ('-d', "--ocrlabel-file"): ocrlabel_path = a elif o in ('-a', "--prob-font"): prob_font = float(a) elif o in ('-b', "--prob-captcha"): prob_captcha = float(a) elif o in ('-g', "--prob-ocr"): prob_ocr = float(a) elif o in ('-y', "--seed"): pass elif o in ('-t', "--type"): pass else: assert False, "unhandled option" if output_file_path == None or params_output_file_path == None or labels_output_file_path == None: print "Must specify the three output files." usage() pdb.gimp_quit(0) sys.exit(2) if reload_mode: reload(output_file_path, params_output_file_path) else: if DEBUG_IMAGES_PATH: ''' # This code is yet untested debug_images = DebugImages(DEBUG_IMAGES_PATH) num_img = len(debug_images.filelist) pl = Pipeline(modules=MODULE_INSTANCES, num_img=num_img, image_size=(32,32)) img_it = debug_images_iterator(debug_images) ''' else: nist = NistData(nist_path, label_path, ocr_path, ocrlabel_path) num_img = 819200 # 800 Mb file if stop_after: num_img = stop_after pl = Pipeline(modules=MODULE_INSTANCES, num_img=num_img, image_size=(32,32)) img_it = nist_supp_iterator(nist, prob_font, prob_captcha, prob_ocr, num_img) cpx_it = range_complexity_iterator(probability_zero, max_complexity) pl.run(img_it, cpx_it) pl.write_output(output_file_path, params_output_file_path, labels_output_file_path) try: _main() except: print "Unexpected error" if DEBUG_X: pylab.ioff() pylab.show() pdb.gimp_quit(0)