Mercurial > ift6266
view deep/stacked_dae/mnist_sda.py @ 190:70a9df1cd20e
initial commit for autoencoder training
author | youssouf |
---|---|
date | Tue, 02 Mar 2010 09:52:27 -0500 |
parents | 1f5937e9e530 |
children | 3632e6258642 |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 # Parameterize call to sgd_optimization for MNIST import numpy import theano import time import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams from sgd_optimization import SdaSgdOptimizer import cPickle, gzip from jobman import DD MNIST_LOCATION = '/u/savardf/datasets/mnist.pkl.gz' def sgd_optimization_mnist(learning_rate=0.1, pretraining_epochs = 2, \ pretrain_lr = 0.1, training_epochs = 5, \ dataset='mnist.pkl.gz'): # Load the dataset f = gzip.open(dataset,'rb') # this gives us train, valid, test (each with .x, .y) dataset = cPickle.load(f) f.close() n_ins = 28*28 n_outs = 10 hyperparameters = DD({'finetuning_lr':learning_rate, 'pretraining_lr':pretrain_lr, 'pretraining_epochs_per_layer':pretraining_epochs, 'max_finetuning_epochs':training_epochs, 'hidden_layers_sizes':[100], 'corruption_levels':[0.2], 'minibatch_size':20}) optimizer = SdaSgdOptimizer(dataset, hyperparameters, n_ins, n_outs) optimizer.pretrain() optimizer.finetune() if __name__ == '__main__': sgd_optimization_mnist(dataset=MNIST_LOCATION)