Mercurial > ift6266
view baseline/conv_mlp/convolutional_mlp.py @ 563:6f0e9e712125
graph a little big smaller.
author | Frederic Bastien <nouiz@nouiz.org> |
---|---|
date | Thu, 03 Jun 2010 13:05:38 -0400 |
parents | d41fe003fade |
children |
line wrap: on
line source
""" This tutorial introduces the LeNet5 neural network architecture using Theano. LeNet5 is a convolutional neural network, good for classifying images. This tutorial shows how to build the architecture, and comes with all the hyper-parameters you need to reproduce the paper's MNIST results. The best results are obtained after X iterations of the main program loop, which takes *** minutes on my workstation (an Intel Core i7, circa July 2009), and *** minutes on my GPU (an NVIDIA GTX 285 graphics processor). This implementation simplifies the model in the following ways: - LeNetConvPool doesn't implement location-specific gain and bias parameters - LeNetConvPool doesn't implement pooling by average, it implements pooling by max. - Digit classification is implemented with a logistic regression rather than an RBF network - LeNet5 was not fully-connected convolutions at second layer References: - Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998. http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf """ import numpy, theano, cPickle, gzip, time import theano.tensor as T import theano.sandbox.softsign import sys import pylearn.datasets.MNIST from pylearn.io import filetensor as ft from theano.sandbox import conv, downsample from ift6266 import datasets import theano,pylearn.version,ift6266 class LeNetConvPoolLayer(object): def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2,2)): """ Allocate a LeNetConvPoolLayer with shared variable internal parameters. :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dtensor4 :param input: symbolic image tensor, of shape image_shape :type filter_shape: tuple or list of length 4 :param filter_shape: (number of filters, num input feature maps, filter height,filter width) :type image_shape: tuple or list of length 4 :param image_shape: (batch size, num input feature maps, image height, image width) :type poolsize: tuple or list of length 2 :param poolsize: the downsampling (pooling) factor (#rows,#cols) """ assert image_shape[1]==filter_shape[1] self.input = input # initialize weight values: the fan-in of each hidden neuron is # restricted by the size of the receptive fields. fan_in = numpy.prod(filter_shape[1:]) W_values = numpy.asarray( rng.uniform( \ low = -numpy.sqrt(3./fan_in), \ high = numpy.sqrt(3./fan_in), \ size = filter_shape), dtype = theano.config.floatX) self.W = theano.shared(value = W_values) # the bias is a 1D tensor -- one bias per output feature map b_values = numpy.zeros((filter_shape[0],), dtype= theano.config.floatX) self.b = theano.shared(value= b_values) # convolve input feature maps with filters conv_out = conv.conv2d(input, self.W, filter_shape=filter_shape, image_shape=image_shape) # downsample each feature map individually, using maxpooling pooled_out = downsample.max_pool2D(conv_out, poolsize, ignore_border=True) # add the bias term. Since the bias is a vector (1D array), we first # reshape it to a tensor of shape (1,n_filters,1,1). Each bias will thus # be broadcasted across mini-batches and feature map width & height self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) # store parameters of this layer self.params = [self.W, self.b] class SigmoidalLayer(object): def __init__(self, rng, input, n_in, n_out): """ Typical hidden layer of a MLP: units are fully-connected and have sigmoidal activation function. Weight matrix W is of shape (n_in,n_out) and the bias vector b is of shape (n_out,). Hidden unit activation is given by: sigmoid(dot(input,W) + b) :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dmatrix :param input: a symbolic tensor of shape (n_examples, n_in) :type n_in: int :param n_in: dimensionality of input :type n_out: int :param n_out: number of hidden units """ self.input = input W_values = numpy.asarray( rng.uniform( \ low = -numpy.sqrt(6./(n_in+n_out)), \ high = numpy.sqrt(6./(n_in+n_out)), \ size = (n_in, n_out)), dtype = theano.config.floatX) self.W = theano.shared(value = W_values) b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) self.b = theano.shared(value= b_values) self.output = T.tanh(T.dot(input, self.W) + self.b) self.params = [self.W, self.b] class LogisticRegression(object): """Multi-class Logistic Regression Class The logistic regression is fully described by a weight matrix :math:`W` and bias vector :math:`b`. Classification is done by projecting data points onto a set of hyperplanes, the distance to which is used to determine a class membership probability. """ def __init__(self, input, n_in, n_out): """ Initialize the parameters of the logistic regression :param input: symbolic variable that describes the input of the architecture (one minibatch) :type n_in: int :param n_in: number of input units, the dimension of the space in which the datapoints lie :type n_out: int :param n_out: number of output units, the dimension of the space in which the labels lie """ # initialize with 0 the weights W as a matrix of shape (n_in, n_out) self.W = theano.shared( value=numpy.zeros((n_in,n_out), dtype = theano.config.floatX) ) # initialize the baises b as a vector of n_out 0s self.b = theano.shared( value=numpy.zeros((n_out,), dtype = theano.config.floatX) ) # compute vector of class-membership probabilities in symbolic form self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) # compute prediction as class whose probability is maximal in # symbolic form self.y_pred=T.argmax(self.p_y_given_x, axis=1) # list of parameters for this layer self.params = [self.W, self.b] def negative_log_likelihood(self, y): """Return the mean of the negative log-likelihood of the prediction of this model under a given target distribution. :param y: corresponds to a vector that gives for each example the correct label Note: we use the mean instead of the sum so that the learning rate is less dependent on the batch size """ return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) def errors(self, y): """Return a float representing the number of errors in the minibatch over the total number of examples of the minibatch ; zero one loss over the size of the minibatch """ # check if y has same dimension of y_pred if y.ndim != self.y_pred.ndim: raise TypeError('y should have the same shape as self.y_pred', ('y', target.type, 'y_pred', self.y_pred.type)) # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError() def evaluate_lenet5(learning_rate=0.1, n_iter=200, batch_size=20, n_kern0=20, n_kern1=50, n_layer=3, filter_shape0=5, filter_shape1=5, sigmoide_size=500, dataset='mnist.pkl.gz'): rng = numpy.random.RandomState(23455) print 'Before load dataset' dataset=datasets.nist_digits train_batches= dataset.train(batch_size) valid_batches=dataset.valid(batch_size) test_batches=dataset.test(batch_size) #print valid_batches.shape #print test_batches.shape print 'After load dataset' ishape = (32,32) # this is the size of NIST images n_kern2=80 n_kern3=100 if n_layer==4: filter_shape1=3 filter_shape2=3 if n_layer==5: filter_shape0=4 filter_shape1=2 filter_shape2=2 filter_shape3=2 # allocate symbolic variables for the data x = T.matrix('x') # rasterized images y = T.lvector() # the labels are presented as 1D vector of [long int] labels ###################### # BUILD ACTUAL MODEL # ###################### # Reshape matrix of rasterized images of shape (batch_size,28*28) # to a 4D tensor, compatible with our LeNetConvPoolLayer layer0_input = x.reshape((batch_size,1,32,32)) # Construct the first convolutional pooling layer: # filtering reduces the image size to (32-5+1,32-5+1)=(28,28) # maxpooling reduces this further to (28/2,28/2) = (14,14) # 4D output tensor is thus of shape (20,20,14,14) layer0 = LeNetConvPoolLayer(rng, input=layer0_input, image_shape=(batch_size,1,32,32), filter_shape=(n_kern0,1,filter_shape0,filter_shape0), poolsize=(2,2)) if(n_layer>2): # Construct the second convolutional pooling layer # filtering reduces the image size to (14-5+1,14-5+1)=(10,10) # maxpooling reduces this further to (10/2,10/2) = (5,5) # 4D output tensor is thus of shape (20,50,5,5) fshape0=(32-filter_shape0+1)/2 layer1 = LeNetConvPoolLayer(rng, input=layer0.output, image_shape=(batch_size,n_kern0,fshape0,fshape0), filter_shape=(n_kern1,n_kern0,filter_shape1,filter_shape1), poolsize=(2,2)) else: fshape0=(32-filter_shape0+1)/2 layer1_input = layer0.output.flatten(2) # construct a fully-connected sigmoidal layer layer1 = SigmoidalLayer(rng, input=layer1_input,n_in=n_kern0*fshape0*fshape0, n_out=sigmoide_size) layer2 = LogisticRegression(input=layer1.output, n_in=sigmoide_size, n_out=10) cost = layer2.negative_log_likelihood(y) test_model = theano.function([x,y], layer2.errors(y)) params = layer2.params+ layer1.params + layer0.params if(n_layer>3): fshape0=(32-filter_shape0+1)/2 fshape1=(fshape0-filter_shape1+1)/2 layer2 = LeNetConvPoolLayer(rng, input=layer1.output, image_shape=(batch_size,n_kern1,fshape1,fshape1), filter_shape=(n_kern2,n_kern1,filter_shape2,filter_shape2), poolsize=(2,2)) if(n_layer>4): fshape0=(32-filter_shape0+1)/2 fshape1=(fshape0-filter_shape1+1)/2 fshape2=(fshape1-filter_shape2+1)/2 fshape3=(fshape2-filter_shape3+1)/2 layer3 = LeNetConvPoolLayer(rng, input=layer2.output, image_shape=(batch_size,n_kern2,fshape2,fshape2), filter_shape=(n_kern3,n_kern2,filter_shape3,filter_shape3), poolsize=(2,2)) layer4_input = layer3.output.flatten(2) layer4 = SigmoidalLayer(rng, input=layer4_input, n_in=n_kern3*fshape3*fshape3, n_out=sigmoide_size) layer5 = LogisticRegression(input=layer4.output, n_in=sigmoide_size, n_out=10) cost = layer5.negative_log_likelihood(y) test_model = theano.function([x,y], layer5.errors(y)) params = layer5.params+ layer4.params+ layer3.params+ layer2.params+ layer1.params + layer0.params elif(n_layer>3): fshape0=(32-filter_shape0+1)/2 fshape1=(fshape0-filter_shape1+1)/2 fshape2=(fshape1-filter_shape2+1)/2 layer3_input = layer2.output.flatten(2) layer3 = SigmoidalLayer(rng, input=layer3_input, n_in=n_kern2*fshape2*fshape2, n_out=sigmoide_size) layer4 = LogisticRegression(input=layer3.output, n_in=sigmoide_size, n_out=10) cost = layer4.negative_log_likelihood(y) test_model = theano.function([x,y], layer4.errors(y)) params = layer4.params+ layer3.params+ layer2.params+ layer1.params + layer0.params elif(n_layer>2): fshape0=(32-filter_shape0+1)/2 fshape1=(fshape0-filter_shape1+1)/2 # the SigmoidalLayer being fully-connected, it operates on 2D matrices of # shape (batch_size,num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (20,32*4*4) = (20,512) layer2_input = layer1.output.flatten(2) # construct a fully-connected sigmoidal layer layer2 = SigmoidalLayer(rng, input=layer2_input, n_in=n_kern1*fshape1*fshape1, n_out=sigmoide_size) # classify the values of the fully-connected sigmoidal layer layer3 = LogisticRegression(input=layer2.output, n_in=sigmoide_size, n_out=10) # the cost we minimize during training is the NLL of the model cost = layer3.negative_log_likelihood(y) # create a function to compute the mistakes that are made by the model test_model = theano.function([x,y], layer3.errors(y)) # create a list of all model parameters to be fit by gradient descent params = layer3.params+ layer2.params+ layer1.params + layer0.params # create a list of gradients for all model parameters grads = T.grad(cost, params) # train_model is a function that updates the model parameters by SGD # Since this model has many parameters, it would be tedious to manually # create an update rule for each model parameter. We thus create the updates # dictionary by automatically looping over all (params[i],grads[i]) pairs. updates = {} for param_i, grad_i in zip(params, grads): updates[param_i] = param_i - learning_rate * grad_i train_model = theano.function([x, y], cost, updates=updates) ############### # TRAIN MODEL # ############### #n_minibatches = len(train_batches) n_minibatches=0 n_valid=0 n_test=0 for x, y in dataset.train(batch_size): if x.shape[0] == batch_size: n_minibatches+=1 n_minibatches*=batch_size print n_minibatches for x, y in dataset.valid(batch_size): if x.shape[0] == batch_size: n_valid+=1 n_valid*=batch_size print n_valid for x, y in dataset.test(batch_size): if x.shape[0] == batch_size: n_test+=1 n_test*=batch_size print n_test # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = n_minibatches # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = float('inf') best_iter = 0 test_score = 0. start_time = time.clock() # have a maximum of `n_iter` iterations through the entire dataset iter=0 for epoch in xrange(n_iter): for x, y in train_batches: if x.shape[0] != batch_size: continue iter+=1 # get epoch and minibatch index #epoch = iter / n_minibatches minibatch_index = iter % n_minibatches if iter %100 == 0: print 'training @ iter = ', iter cost_ij = train_model(x,y) # compute zero-one loss on validation set this_validation_loss = 0. for x,y in valid_batches: if x.shape[0] != batch_size: continue # sum up the errors for each minibatch this_validation_loss += test_model(x,y) # get the average by dividing with the number of minibatches this_validation_loss /= n_valid print('epoch %i, minibatch %i/%i, validation error %f %%' % \ (epoch, minibatch_index+1, n_minibatches, \ this_validation_loss*100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold : patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_score = 0. for x,y in test_batches: if x.shape[0] != batch_size: continue test_score += test_model(x,y) test_score /= n_test print((' epoch %i, minibatch %i/%i, test error of best ' 'model %f %%') % (epoch, minibatch_index+1, n_minibatches, test_score*100.)) if patience <= iter : break end_time = time.clock() print('Optimization complete.') print('Best validation score of %f %% obtained at iteration %i,'\ 'with test performance %f %%' % (best_validation_loss * 100., best_iter, test_score*100.)) print('The code ran for %f minutes' % ((end_time-start_time)/60.)) return (best_validation_loss * 100., test_score*100., (end_time-start_time)/60., best_iter) if __name__ == '__main__': evaluate_lenet5() def experiment(state, channel): print 'start experiment' (best_validation_loss, test_score, minutes_trained, iter) = evaluate_lenet5(state.learning_rate, state.n_iter, state.batch_size, state.n_kern0, state.n_kern1, state.n_layer, state.filter_shape0, state.filter_shape1,state.sigmoide_size) print 'end experiment' pylearn.version.record_versions(state,[theano,ift6266,pylearn]) state.best_validation_loss = best_validation_loss state.test_score = test_score state.minutes_trained = minutes_trained state.iter = iter return channel.COMPLETE