Mercurial > ift6266
view deep/convolutional_dae/salah_exp/sgd_optimization_new.py @ 485:6beaf3328521
les tables enlevées
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Mon, 31 May 2010 21:50:00 -0400 |
parents | c05680f8c92f |
children |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 import numpy import theano import time import datetime import theano.tensor as T import sys import pickle from jobman import DD import jobman, jobman.sql from copy import copy from stacked_convolutional_dae_uit import CSdA from ift6266.utils.seriestables import * buffersize=1000 default_series = { \ 'reconstruction_error' : DummySeries(), 'training_error' : DummySeries(), 'validation_error' : DummySeries(), 'test_error' : DummySeries(), 'params' : DummySeries() } def itermax(iter, max): for i,it in enumerate(iter): if i >= max: break yield it def get_conv_shape(kernels,imgshp,batch_size,max_pool_layers): # Returns the dimension at the output of the convoluational net # and a list of Image and kernel shape for every # Convolutional layer conv_layers=[] init_layer = [ [ kernels[0][0],1,kernels[0][1],kernels[0][2] ],\ [ batch_size , 1, imgshp[0], imgshp[1] ], max_pool_layers[0] ] conv_layers.append(init_layer) conv_n_out = int((32-kernels[0][2]+1)/max_pool_layers[0][0]) for i in range(1,len(kernels)): layer = [ [ kernels[i][0],kernels[i-1][0],kernels[i][1],kernels[i][2] ],\ [ batch_size, kernels[i-1][0],conv_n_out,conv_n_out ], max_pool_layers[i] ] conv_layers.append(layer) conv_n_out = int( (conv_n_out - kernels[i][2]+1)/max_pool_layers[i][0]) conv_n_out=kernels[-1][0]*conv_n_out**2 return conv_n_out,conv_layers class CSdASgdOptimizer: def __init__(self, dataset, hyperparameters, n_ins, n_outs, examples_per_epoch, series=default_series, max_minibatches=None): self.dataset = dataset self.hp = hyperparameters self.n_ins = n_ins self.n_outs = n_outs self.parameters_pre=[] self.max_minibatches = max_minibatches print "CSdASgdOptimizer, max_minibatches =", max_minibatches self.ex_per_epoch = examples_per_epoch self.mb_per_epoch = examples_per_epoch / self.hp.minibatch_size self.series = series self.rng = numpy.random.RandomState(1234) self.init_classifier() sys.stdout.flush() def init_classifier(self): print "Constructing classifier" n_ins,convlayers = get_conv_shape(self.hp.kernels,self.hp.imgshp,self.hp.minibatch_size,self.hp.max_pool_layers) self.classifier = CSdA(n_ins_mlp = n_ins, batch_size = self.hp.minibatch_size, conv_hidden_layers_sizes = convlayers, mlp_hidden_layers_sizes = self.hp.mlp_size, corruption_levels = self.hp.corruption_levels, rng = self.rng, n_out = self.n_outs, pretrain_lr = self.hp.pretraining_lr, finetune_lr = self.hp.finetuning_lr) #theano.printing.pydotprint(self.classifier.pretrain_functions[0], "function.graph") sys.stdout.flush() def train(self): self.pretrain(self.dataset) self.finetune(self.dataset) def pretrain(self,dataset): print "STARTING PRETRAINING, time = ", datetime.datetime.now() sys.stdout.flush() un_fichier=int(819200.0/self.hp.minibatch_size) #Number of batches in a P07 file start_time = time.clock() ## Pre-train layer-wise for i in xrange(self.classifier.n_layers): # go through pretraining epochs for epoch in xrange(self.hp.pretraining_epochs_per_layer): # go through the training set batch_index=0 count=0 num_files=0 for x,y in dataset.train(self.hp.minibatch_size): if x.shape[0] != self.hp.minibatch_size: continue c = self.classifier.pretrain_functions[i](x) count +=1 self.series["reconstruction_error"].append((epoch, batch_index), c) batch_index+=1 #if batch_index % 100 == 0: # print "100 batches" # useful when doing tests if self.max_minibatches and batch_index >= self.max_minibatches: break #When we pass through the data only once (the case with P07) #There is approximately 800*1024=819200 examples per file (1k per example and files are 800M) if self.hp.pretraining_epochs_per_layer == 1 and count%un_fichier == 0: print 'Pre-training layer %i, epoch %d, cost '%(i,num_files),c num_files+=1 sys.stdout.flush() self.series['params'].append((num_files,), self.classifier.all_params) #When NIST is used if self.hp.pretraining_epochs_per_layer > 1: print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c sys.stdout.flush() self.series['params'].append((epoch,), self.classifier.all_params) end_time = time.clock() print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) self.hp.update({'pretraining_time': end_time-start_time}) sys.stdout.flush() #To be able to load them later for tests on finetune self.parameters_pre=[copy(x.value) for x in self.classifier.params] f = open('params_pretrain.txt', 'w') pickle.dump(self.parameters_pre,f) f.close() def finetune(self,dataset,dataset_test,num_finetune,ind_test,special=0,decrease=0): if special != 0 and special != 1: sys.exit('Bad value for variable special. Must be in {0,1}') print "STARTING FINETUNING, time = ", datetime.datetime.now() minibatch_size = self.hp.minibatch_size if ind_test == 0 or ind_test == 20: nom_test = "NIST" nom_train="P07" else: nom_test = "P07" nom_train = "NIST" # create a function to compute the mistakes that are made by the model # on the validation set, or testing set test_model = \ theano.function( [self.classifier.x,self.classifier.y], self.classifier.errors) # givens = { # self.classifier.x: ensemble_x, # self.classifier.y: ensemble_y]}) validate_model = \ theano.function( [self.classifier.x,self.classifier.y], self.classifier.errors) # givens = { # self.classifier.x: , # self.classifier.y: ]}) # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2. # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(self.mb_per_epoch, patience/2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch if self.max_minibatches and validation_frequency > self.max_minibatches: validation_frequency = self.max_minibatches / 2 best_params = None best_validation_loss = float('inf') test_score = 0. start_time = time.clock() done_looping = False epoch = 0 total_mb_index = 0 minibatch_index = 0 parameters_finetune=[] learning_rate = self.hp.finetuning_lr while (epoch < num_finetune) and (not done_looping): epoch = epoch + 1 for x,y in dataset.train(minibatch_size,bufsize=buffersize): minibatch_index += 1 if x.shape[0] != self.hp.minibatch_size: print 'bim' continue cost_ij = self.classifier.finetune(x,y)#,learning_rate) total_mb_index += 1 self.series["training_error"].append((epoch, minibatch_index), cost_ij) if (total_mb_index+1) % validation_frequency == 0: #minibatch_index += 1 #The validation set is always NIST (we want the model to be good on NIST) iter=dataset_test.valid(minibatch_size,bufsize=buffersize) if self.max_minibatches: iter = itermax(iter, self.max_minibatches) validation_losses = [] for x,y in iter: if x.shape[0] != self.hp.minibatch_size: print 'bim' continue validation_losses.append(validate_model(x,y)) this_validation_loss = numpy.mean(validation_losses) self.series["validation_error"].\ append((epoch, minibatch_index), this_validation_loss*100.) print('epoch %i, minibatch %i, validation error on NIST : %f %%' % \ (epoch, minibatch_index+1, \ this_validation_loss*100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold : patience = max(patience, total_mb_index * patience_increase) # save best validation score, iteration number and parameters best_validation_loss = this_validation_loss best_iter = total_mb_index parameters_finetune=[copy(x.value) for x in self.classifier.params] # test it on the test set iter = dataset.test(minibatch_size,bufsize=buffersize) if self.max_minibatches: iter = itermax(iter, self.max_minibatches) test_losses = [] test_losses2 = [] for x,y in iter: if x.shape[0] != self.hp.minibatch_size: print 'bim' continue test_losses.append(test_model(x,y)) test_score = numpy.mean(test_losses) #test it on the second test set iter2 = dataset_test.test(minibatch_size,bufsize=buffersize) if self.max_minibatches: iter2 = itermax(iter2, self.max_minibatches) for x,y in iter2: if x.shape[0] != self.hp.minibatch_size: continue test_losses2.append(test_model(x,y)) test_score2 = numpy.mean(test_losses2) self.series["test_error"].\ append((epoch, minibatch_index), test_score*100.) print((' epoch %i, minibatch %i, test error on dataset %s (train data) of best ' 'model %f %%') % (epoch, minibatch_index+1,nom_train, test_score*100.)) print((' epoch %i, minibatch %i, test error on dataset %s of best ' 'model %f %%') % (epoch, minibatch_index+1,nom_test, test_score2*100.)) if patience <= total_mb_index: done_looping = True break #to exit the FOR loop sys.stdout.flush() # useful when doing tests if self.max_minibatches and minibatch_index >= self.max_minibatches: break if decrease == 1: learning_rate /= 2 #divide the learning rate by 2 for each new epoch self.series['params'].append((epoch,), self.classifier.all_params) if done_looping == True: #To exit completly the fine-tuning break #to exit the WHILE loop end_time = time.clock() self.hp.update({'finetuning_time':end_time-start_time,\ 'best_validation_error':best_validation_loss,\ 'test_score':test_score, 'num_finetuning_epochs':epoch}) print(('\nOptimization complete with best validation score of %f %%,' 'with test performance %f %% on dataset %s ') % (best_validation_loss * 100., test_score*100.,nom_train)) print(('The test score on the %s dataset is %f')%(nom_test,test_score2*100.)) print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.)) sys.stdout.flush() #Save a copy of the parameters in a file to be able to get them in the future if special == 1: #To keep a track of the value of the parameters f = open('params_finetune_stanford.txt', 'w') pickle.dump(parameters_finetune,f) f.close() elif ind_test == 0 | ind_test == 20: #To keep a track of the value of the parameters f = open('params_finetune_P07.txt', 'w') pickle.dump(parameters_finetune,f) f.close() elif ind_test== 1: #For the run with 2 finetunes. It will be faster. f = open('params_finetune_NIST.txt', 'w') pickle.dump(parameters_finetune,f) f.close() elif ind_test== 21: #To keep a track of the value of the parameters f = open('params_finetune_P07_then_NIST.txt', 'w') pickle.dump(parameters_finetune,f) f.close() #Set parameters like they where right after pre-train or finetune def reload_parameters(self,which): #self.parameters_pre=pickle.load('params_pretrain.txt') f = open(which) self.parameters_pre=pickle.load(f) f.close() for idx,x in enumerate(self.parameters_pre): if x.dtype=='float64': self.classifier.params[idx].value=theano._asarray(copy(x),dtype=theano.config.floatX) else: self.classifier.params[idx].value=copy(x) def training_error(self,dataset): # create a function to compute the mistakes that are made by the model # on the validation set, or testing set test_model = \ theano.function( [self.classifier.x,self.classifier.y], self.classifier.errors) iter2 = dataset.train(self.hp.minibatch_size,bufsize=buffersize) train_losses2 = [test_model(x,y) for x,y in iter2] train_score2 = numpy.mean(train_losses2) print "Training error is: " + str(train_score2)