Mercurial > ift6266
view deep/stacked_dae/sgd_optimization.py @ 334:6143b23e2610
Name the important layers to be able to change them easily later.
author | Arnaud Bergeron <abergeron@gmail.com> |
---|---|
date | Wed, 14 Apr 2010 16:06:43 -0400 |
parents | 8a3af19ae272 |
children |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 # Generic SdA optimization loop, adapted from the deeplearning.net tutorial from __future__ import with_statement import numpy import theano import time import datetime import theano.tensor as T import sys from jobman import DD import jobman, jobman.sql from stacked_dae import SdA from ift6266.utils.seriestables import * default_series = { \ 'reconstruction_error' : DummySeries(), 'training_error' : DummySeries(), 'validation_error' : DummySeries(), 'test_error' : DummySeries(), 'params' : DummySeries() } class SdaSgdOptimizer: def __init__(self, dataset, hyperparameters, n_ins, n_outs, examples_per_epoch, series=default_series, save_params=False): self.dataset = dataset self.hp = hyperparameters self.n_ins = n_ins self.n_outs = n_outs self.save_params = save_params self.ex_per_epoch = examples_per_epoch self.mb_per_epoch = examples_per_epoch / self.hp.minibatch_size self.series = series self.rng = numpy.random.RandomState(1234) self.init_classifier() sys.stdout.flush() def init_classifier(self): print "Constructing classifier" # we don't want to save arrays in DD objects, so # we recreate those arrays here nhl = self.hp.num_hidden_layers layers_sizes = [self.hp.hidden_layers_sizes] * nhl corruption_levels = [self.hp.corruption_levels] * nhl # construct the stacked denoising autoencoder class self.classifier = SdA( \ batch_size = self.hp.minibatch_size, \ n_ins= self.n_ins, \ hidden_layers_sizes = layers_sizes, \ n_outs = self.n_outs, \ corruption_levels = corruption_levels,\ rng = self.rng,\ pretrain_lr = self.hp.pretraining_lr, \ finetune_lr = self.hp.finetuning_lr) #theano.printing.pydotprint(self.classifier.pretrain_functions[0], "function.graph") sys.stdout.flush() def train(self): self.pretrain(self.dataset) self.finetune(self.dataset) def pretrain(self,dataset): print "STARTING PRETRAINING, time = ", datetime.datetime.now() sys.stdout.flush() start_time = time.clock() ## Pre-train layer-wise for i in xrange(self.classifier.n_layers): # go through pretraining epochs for epoch in xrange(self.hp.pretraining_epochs_per_layer): # go through the training set batch_index=0 for x,y in dataset.train(self.hp.minibatch_size): c = self.classifier.pretrain_functions[i](x) self.series["reconstruction_error"].append((epoch, batch_index), c) batch_index+=1 #if batch_index % 100 == 0: # print "100 batches" print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c sys.stdout.flush() self.series['params'].append((epoch,), self.classifier.all_params) end_time = time.clock() print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) self.hp.update({'pretraining_time': end_time-start_time}) sys.stdout.flush() def finetune(self,dataset): print "STARTING FINETUNING, time = ", datetime.datetime.now() minibatch_size = self.hp.minibatch_size # create a function to compute the mistakes that are made by the model # on the validation set, or testing set test_model = \ theano.function( [self.classifier.x,self.classifier.y], self.classifier.errors) # givens = { # self.classifier.x: ensemble_x, # self.classifier.y: ensemble_y]}) validate_model = \ theano.function( [self.classifier.x,self.classifier.y], self.classifier.errors) # givens = { # self.classifier.x: , # self.classifier.y: ]}) # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2. # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(self.mb_per_epoch, patience/2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = float('inf') test_score = 0. start_time = time.clock() done_looping = False epoch = 0 total_mb_index = 0 while (epoch < self.hp.max_finetuning_epochs) and (not done_looping): epoch = epoch + 1 minibatch_index = -1 for x,y in dataset.train(minibatch_size): minibatch_index += 1 cost_ij = self.classifier.finetune(x,y) total_mb_index += 1 self.series["training_error"].append((epoch, minibatch_index), cost_ij) if (total_mb_index+1) % validation_frequency == 0: iter = dataset.valid(minibatch_size) validation_losses = [validate_model(x,y) for x,y in iter] this_validation_loss = numpy.mean(validation_losses) self.series["validation_error"].\ append((epoch, minibatch_index), this_validation_loss*100.) print('epoch %i, minibatch %i/%i, validation error %f %%' % \ (epoch, minibatch_index+1, self.mb_per_epoch, \ this_validation_loss*100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold : patience = max(patience, total_mb_index * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = total_mb_index # test it on the test set iter = dataset.test(minibatch_size) test_losses = [test_model(x,y) for x,y in iter] test_score = numpy.mean(test_losses) self.series["test_error"].\ append((epoch, minibatch_index), test_score*100.) print((' epoch %i, minibatch %i/%i, test error of best ' 'model %f %%') % (epoch, minibatch_index+1, self.mb_per_epoch, test_score*100.)) sys.stdout.flush() self.series['params'].append((epoch,), self.classifier.all_params) if patience <= total_mb_index: done_looping = True break end_time = time.clock() self.hp.update({'finetuning_time':end_time-start_time,\ 'best_validation_error':best_validation_loss,\ 'test_score':test_score, 'num_finetuning_epochs':epoch}) if self.save_params: save_params(self.classifier.all_params, "weights.dat") print(('Optimization complete with best validation score of %f %%,' 'with test performance %f %%') % (best_validation_loss * 100., test_score*100.)) print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.)) def save_params(all_params, filename): import pickle with open(filename, 'wb') as f: values = [p.value for p in all_params] # -1 for HIGHEST_PROTOCOL pickle.dump(values, f, -1)