Mercurial > ift6266
view deep/convolutional_dae/stacked_convolutional_dae.py @ 416:5f9d04dda707
Correction d'une erreur pour pinch et ajout d'une ref bibliographique
author | fsavard |
---|---|
date | Thu, 29 Apr 2010 18:26:30 -0400 |
parents | 0c0f0b3f6a93 |
children |
line wrap: on
line source
import numpy import theano import time import sys import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams #import theano.sandbox.softsign from theano.tensor.signal import downsample from theano.tensor.nnet import conv from ift6266 import datasets from ift6266.baseline.log_reg.log_reg import LogisticRegression batch_size = 100 class SigmoidalLayer(object): def __init__(self, rng, input, n_in, n_out): self.input = input W_values = numpy.asarray( rng.uniform( \ low = -numpy.sqrt(6./(n_in+n_out)), \ high = numpy.sqrt(6./(n_in+n_out)), \ size = (n_in, n_out)), dtype = theano.config.floatX) self.W = theano.shared(value = W_values) b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) self.b = theano.shared(value= b_values) self.output = T.tanh(T.dot(input, self.W) + self.b) self.params = [self.W, self.b] class dA_conv(object): def __init__(self, input, filter_shape, corruption_level = 0.1, shared_W = None, shared_b = None, image_shape = None, poolsize = (2,2)): theano_rng = RandomStreams() fan_in = numpy.prod(filter_shape[1:]) fan_out = filter_shape[0] * numpy.prod(filter_shape[2:]) center = theano.shared(value = 1, name="center") scale = theano.shared(value = 2, name="scale") if shared_W != None and shared_b != None : self.W = shared_W self.b = shared_b else: initial_W = numpy.asarray( numpy.random.uniform( low = -numpy.sqrt(6./(fan_in+fan_out)), high = numpy.sqrt(6./(fan_in+fan_out)), size = filter_shape), dtype = theano.config.floatX) initial_b = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX) self.W = theano.shared(value = initial_W, name = "W") self.b = theano.shared(value = initial_b, name = "b") initial_b_prime= numpy.zeros((filter_shape[1],),dtype=theano.config.floatX) self.b_prime = theano.shared(value = initial_b_prime, name = "b_prime") self.x = input self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level,dtype=theano.config.floatX) * self.x conv1_out = conv.conv2d(self.tilde_x, self.W, filter_shape=filter_shape, image_shape=image_shape, border_mode='valid') self.y = T.tanh(conv1_out + self.b.dimshuffle('x', 0, 'x', 'x')) da_filter_shape = [ filter_shape[1], filter_shape[0], filter_shape[2], filter_shape[3] ] initial_W_prime = numpy.asarray( numpy.random.uniform( \ low = -numpy.sqrt(6./(fan_in+fan_out)), \ high = numpy.sqrt(6./(fan_in+fan_out)), \ size = da_filter_shape), dtype = theano.config.floatX) self.W_prime = theano.shared(value = initial_W_prime, name = "W_prime") conv2_out = conv.conv2d(self.y, self.W_prime, filter_shape = da_filter_shape, border_mode='full') self.z = (T.tanh(conv2_out + self.b_prime.dimshuffle('x', 0, 'x', 'x'))+center) / scale scaled_x = (self.x + center) / scale self.L = - T.sum( scaled_x*T.log(self.z) + (1-scaled_x)*T.log(1-self.z), axis=1 ) self.cost = T.mean(self.L) self.params = [ self.W, self.b, self.b_prime ] class LeNetConvPoolLayer(object): def __init__(self, rng, input, filter_shape, image_shape=None, poolsize=(2,2)): self.input = input W_values = numpy.zeros(filter_shape, dtype=theano.config.floatX) self.W = theano.shared(value=W_values) b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX) self.b = theano.shared(value=b_values) conv_out = conv.conv2d(input, self.W, filter_shape=filter_shape, image_shape=image_shape) fan_in = numpy.prod(filter_shape[1:]) fan_out = filter_shape[0] * numpy.prod(filter_shape[2:]) / numpy.prod(poolsize) W_bound = numpy.sqrt(6./(fan_in + fan_out)) self.W.value = numpy.asarray( rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), dtype = theano.config.floatX) pooled_out = downsample.max_pool2D(conv_out, poolsize, ignore_border=True) self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) self.params = [self.W, self.b] class SdA(): def __init__(self, input, n_ins_mlp, conv_hidden_layers_sizes, mlp_hidden_layers_sizes, corruption_levels, rng, n_out, pretrain_lr, finetune_lr, img_shape): self.layers = [] self.pretrain_functions = [] self.params = [] self.conv_n_layers = len(conv_hidden_layers_sizes) self.mlp_n_layers = len(mlp_hidden_layers_sizes) self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector of for i in xrange( self.conv_n_layers ): filter_shape=conv_hidden_layers_sizes[i][0] image_shape=conv_hidden_layers_sizes[i][1] max_poolsize=conv_hidden_layers_sizes[i][2] if i == 0 : layer_input=self.x.reshape((self.x.shape[0], 1) + img_shape) else: layer_input=self.layers[-1].output layer = LeNetConvPoolLayer(rng, input=layer_input, image_shape=image_shape, filter_shape=filter_shape, poolsize=max_poolsize) print 'Convolutional layer', str(i+1), 'created' self.layers += [layer] self.params += layer.params da_layer = dA_conv(corruption_level = corruption_levels[0], input = layer_input, shared_W = layer.W, shared_b = layer.b, filter_shape = filter_shape, image_shape = image_shape ) gparams = T.grad(da_layer.cost, da_layer.params) updates = {} for param, gparam in zip(da_layer.params, gparams): updates[param] = param - gparam * pretrain_lr update_fn = theano.function([self.x], da_layer.cost, updates = updates) self.pretrain_functions += [update_fn] for i in xrange( self.mlp_n_layers ): if i == 0 : input_size = n_ins_mlp else: input_size = mlp_hidden_layers_sizes[i-1] if i == 0 : if len( self.layers ) == 0 : layer_input=self.x else : layer_input = self.layers[-1].output.flatten(2) else: layer_input = self.layers[-1].output layer = SigmoidalLayer(rng, layer_input, input_size, mlp_hidden_layers_sizes[i] ) self.layers += [layer] self.params += layer.params print 'MLP layer', str(i+1), 'created' self.logLayer = LogisticRegression(input=self.layers[-1].output, \ n_in=mlp_hidden_layers_sizes[-1], n_out=n_out) self.params += self.logLayer.params cost = self.logLayer.negative_log_likelihood(self.y) gparams = T.grad(cost, self.params) updates = {} for param,gparam in zip(self.params, gparams): updates[param] = param - gparam*finetune_lr self.finetune = theano.function([self.x, self.y], cost, updates = updates) self.errors = self.logLayer.errors(self.y) def sgd_optimization_mnist(learning_rate=0.1, pretraining_epochs = 1, pretrain_lr = 0.1, training_epochs = 1000, kernels = [[4,5,5], [4,3,3]], mlp_layers=[500], corruption_levels = [0.2, 0.2, 0.2], batch_size = batch_size, img_shape=(28, 28), max_pool_layers = [[2,2], [2,2]], dataset=datasets.mnist(5000)): # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1d vector of # [int] labels layer0_input = x.reshape((x.shape[0],1)+img_shape) rng = numpy.random.RandomState(1234) conv_layers=[] init_layer = [[kernels[0][0],1,kernels[0][1],kernels[0][2]], None, # do not specify the batch size since it can # change for the last one and then theano will # crash. max_pool_layers[0]] conv_layers.append(init_layer) conv_n_out = (img_shape[0]-kernels[0][2]+1)/max_pool_layers[0][0] for i in range(1,len(kernels)): layer = [[kernels[i][0],kernels[i-1][0],kernels[i][1],kernels[i][2]], None, # same comment as for init_layer max_pool_layers[i] ] conv_layers.append(layer) conv_n_out = (conv_n_out - kernels[i][2]+1)/max_pool_layers[i][0] network = SdA(input = layer0_input, n_ins_mlp = kernels[-1][0]*conv_n_out**2, conv_hidden_layers_sizes = conv_layers, mlp_hidden_layers_sizes = mlp_layers, corruption_levels = corruption_levels, n_out = 62, rng = rng , pretrain_lr = pretrain_lr, finetune_lr = learning_rate, img_shape=img_shape) test_model = theano.function([network.x, network.y], network.errors) start_time = time.clock() for i in xrange(len(network.layers)-len(mlp_layers)): for epoch in xrange(pretraining_epochs): for x, y in dataset.train(batch_size): c = network.pretrain_functions[i](x) print 'pre-training convolution layer %i, epoch %d, cost '%(i,epoch), c patience = 10000 # look as this many examples regardless patience_increase = 2. # WAIT THIS MUCH LONGER WHEN A NEW BEST IS # FOUND improvement_threshold = 0.995 # a relative improvement of this much is validation_frequency = patience/2 best_params = None best_validation_loss = float('inf') test_score = 0. start_time = time.clock() done_looping = False epoch = 0 iter = 0 while (epoch < training_epochs) and (not done_looping): epoch = epoch + 1 for x, y in dataset.train(batch_size): cost_ij = network.finetune(x, y) iter += 1 if iter % validation_frequency == 0: validation_losses = [test_model(xv, yv) for xv, yv in dataset.valid(batch_size)] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, iter %i, validation error %f %%' % \ (epoch, iter, this_validation_loss*100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold : patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [test_model(xt, yt) for xt, yt in dataset.test(batch_size)] test_score = numpy.mean(test_losses) print((' epoch %i, iter %i, test error of best ' 'model %f %%') % (epoch, iter, test_score*100.)) if patience <= iter : done_looping = True break end_time = time.clock() print(('Optimization complete with best validation score of %f %%,' 'with test performance %f %%') % (best_validation_loss * 100., test_score*100.)) print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) if __name__ == '__main__': sgd_optimization_mnist()