Mercurial > ift6266
view deep/convolutional_dae/salah_exp/stacked_convolutional_dae_uit.py @ 370:543ae35e387e
changes in generation script for the new data
author | Xavier Glorot <glorotxa@iro.umontreal.ca> |
---|---|
date | Sat, 24 Apr 2010 15:34:07 -0400 |
parents | c05680f8c92f |
children |
line wrap: on
line source
import numpy import theano import time import sys import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams import theano.sandbox.softsign import copy from theano.tensor.signal import downsample from theano.tensor.nnet import conv sys.path.append('../../') #import ift6266.datasets import ift6266.datasets from ift6266.baseline.log_reg.log_reg import LogisticRegression from theano.tensor.xlogx import xlogx, xlogy0 # it's target*log(output) def binary_cross_entropy(target, output, sum_axis=1): XE = xlogy0(target, output) + xlogy0((1 - target), (1 - output)) return -T.sum(XE, axis=sum_axis) class SigmoidalLayer(object): def __init__(self, rng, input, n_in, n_out): self.input = input W_values = numpy.asarray( rng.uniform( \ low = -numpy.sqrt(6./(n_in+n_out)), \ high = numpy.sqrt(6./(n_in+n_out)), \ size = (n_in, n_out)), dtype = theano.config.floatX) self.W = theano.shared(value = W_values) b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) self.b = theano.shared(value= b_values) self.output = T.tanh(T.dot(input, self.W) + self.b) self.params = [self.W, self.b] class dA_conv(object): def __init__(self, input, filter_shape, corruption_level = 0.1, shared_W = None, shared_b = None, image_shape = None, num = 0,batch_size=20): theano_rng = RandomStreams() fan_in = numpy.prod(filter_shape[1:]) fan_out = filter_shape[0] * numpy.prod(filter_shape[2:]) center = theano.shared(value = 1, name="center") scale = theano.shared(value = 2, name="scale") if shared_W != None and shared_b != None : self.W = shared_W self.b = shared_b else: initial_W = numpy.asarray( numpy.random.uniform( low = -numpy.sqrt(6./(fan_in+fan_out)), high = numpy.sqrt(6./(fan_in+fan_out)), size = filter_shape), dtype = theano.config.floatX) initial_b = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX) self.W = theano.shared(value = initial_W, name = "W") self.b = theano.shared(value = initial_b, name = "b") initial_b_prime= numpy.zeros((filter_shape[1],),dtype=theano.config.floatX) self.b_prime = theano.shared(value = initial_b_prime, name = "b_prime") self.x = input self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level,dtype=theano.config.floatX) * self.x conv1_out = conv.conv2d(self.tilde_x, self.W, filter_shape=filter_shape, image_shape=image_shape, unroll_kern=4,unroll_batch=4, border_mode='valid') self.y = T.tanh(conv1_out + self.b.dimshuffle('x', 0, 'x', 'x')) da_filter_shape = [ filter_shape[1], filter_shape[0], filter_shape[2],\ filter_shape[3] ] da_image_shape = [ batch_size, filter_shape[0], image_shape[2]-filter_shape[2]+1, image_shape[3]-filter_shape[3]+1 ] #import pdb; pdb.set_trace() initial_W_prime = numpy.asarray( numpy.random.uniform( \ low = -numpy.sqrt(6./(fan_in+fan_out)), \ high = numpy.sqrt(6./(fan_in+fan_out)), \ size = da_filter_shape), dtype = theano.config.floatX) self.W_prime = theano.shared(value = initial_W_prime, name = "W_prime") conv2_out = conv.conv2d(self.y, self.W_prime, filter_shape = da_filter_shape,\ image_shape = da_image_shape, \ unroll_kern=4,unroll_batch=4, \ border_mode='full') self.z = (T.tanh(conv2_out + self.b_prime.dimshuffle('x', 0, 'x', 'x'))+center) / scale if num != 0 : scaled_x = (self.x + center) / scale else: scaled_x = self.x self.L = - T.sum( scaled_x*T.log(self.z) + (1-scaled_x)*T.log(1-self.z), axis=1 ) self.cost = T.mean(self.L) self.params = [ self.W, self.b, self.b_prime ] class LeNetConvPoolLayer(object): def __init__(self, rng, input, filter_shape, image_shape=None, poolsize=(2,2)): self.input = input W_values = numpy.zeros(filter_shape, dtype=theano.config.floatX) self.W = theano.shared(value=W_values) b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX) self.b = theano.shared(value=b_values) conv_out = conv.conv2d(input, self.W, filter_shape=filter_shape, image_shape=image_shape, unroll_kern=4,unroll_batch=4) fan_in = numpy.prod(filter_shape[1:]) fan_out = filter_shape[0] * numpy.prod(filter_shape[2:]) / numpy.prod(poolsize) W_bound = numpy.sqrt(6./(fan_in + fan_out)) self.W.value = numpy.asarray( rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), dtype = theano.config.floatX) pooled_out = downsample.max_pool2D(conv_out, poolsize, ignore_border=True) self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) self.params = [self.W, self.b] class CSdA(): def __init__(self, n_ins_mlp,batch_size, conv_hidden_layers_sizes, mlp_hidden_layers_sizes, corruption_levels, rng, n_out, pretrain_lr, finetune_lr): # Just to make sure those are not modified somewhere else afterwards hidden_layers_sizes = copy.deepcopy(mlp_hidden_layers_sizes) corruption_levels = copy.deepcopy(corruption_levels) #update_locals(self, locals()) self.layers = [] self.pretrain_functions = [] self.params = [] self.n_layers = len(conv_hidden_layers_sizes) self.mlp_n_layers = len(mlp_hidden_layers_sizes) self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector of for i in xrange( self.n_layers ): filter_shape=conv_hidden_layers_sizes[i][0] image_shape=conv_hidden_layers_sizes[i][1] max_poolsize=conv_hidden_layers_sizes[i][2] if i == 0 : layer_input=self.x.reshape((batch_size, 1, 32, 32)) else: layer_input=self.layers[-1].output layer = LeNetConvPoolLayer(rng, input=layer_input, image_shape=image_shape, filter_shape=filter_shape, poolsize=max_poolsize) print 'Convolutional layer', str(i+1), 'created' self.layers += [layer] self.params += layer.params da_layer = dA_conv(corruption_level = corruption_levels[0], input = layer_input, shared_W = layer.W, shared_b = layer.b, filter_shape=filter_shape, image_shape = image_shape, num=i , batch_size=batch_size) gparams = T.grad(da_layer.cost, da_layer.params) updates = {} for param, gparam in zip(da_layer.params, gparams): updates[param] = param - gparam * pretrain_lr update_fn = theano.function([self.x], da_layer.cost, updates = updates) self.pretrain_functions += [update_fn] for i in xrange( self.mlp_n_layers ): if i == 0 : input_size = n_ins_mlp else: input_size = mlp_hidden_layers_sizes[i-1] if i == 0 : if len( self.layers ) == 0 : layer_input=self.x else : layer_input = self.layers[-1].output.flatten(2) else: layer_input = self.layers[-1].output layer = SigmoidalLayer(rng, layer_input, input_size, mlp_hidden_layers_sizes[i] ) self.layers += [layer] self.params += layer.params print 'MLP layer', str(i+1), 'created' self.logLayer = LogisticRegression(input=self.layers[-1].output, \ n_in=mlp_hidden_layers_sizes[-1], n_out=n_out) self.params += self.logLayer.params self.all_params = self.params cost = self.logLayer.negative_log_likelihood(self.y) gparams = T.grad(cost, self.params) updates = {} for param,gparam in zip(self.params, gparams): updates[param] = param - gparam*finetune_lr self.finetune = theano.function([self.x, self.y], cost, updates = updates) self.errors = self.logLayer.errors(self.y)