Mercurial > ift6266
view deep/stacked_dae/aistats_review/m_mlp_ift.py @ 631:510220effb14
corrections demandees par reviewer
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Sat, 19 Mar 2011 22:44:53 -0400 |
parents | 820764689d2f |
children |
line wrap: on
line source
import pdb,bricks.costs,datetime,os,theano,sys from bricks.experiments import * from bricks.networks import * from bricks import * from datasets import * from bricks.optimizer import * from monitor.exp_monitoring import * #from monitor.series import * import numpy #import jobman,jobman.sql,pylearn.version #from jobman import DD #from utils.JobmanHandling import * class MnistTSdaeExperiment(ExperimentObject): # Todo : Write down the interface def _init_dataset(self): self.dataset_list = [ PNIST07(), nist_all() ] self.dataset = self.dataset_list[0] def _init_outputs(self): self.ds_output = { 'Pnist_Train' : self.dataset_list[0].train, 'Pnist_Valid' : self.dataset_list[0].valid, 'Pnist_Test' : self.dataset_list[0].test, 'nist_Train' : self.dataset_list[1].train, 'nist_Valid' : self.dataset_list[1].valid, 'nist_Test' : self.dataset_list[1].test} self.outputs = { 'CC' : costs.classification_error(self.network.layers[-1][0].out_dict['argmax_softmax_output'],self.network.in_dict['pred']) } #'L1' : costs.L1(self.network.layers[0][0].out_dict['sigmoid_output']) } #'LL' : costs.negative_ll(self.network.layers[-1][0].out_dict['softmax_output'],self.network.in_dict['pred']) } def _init_network(self): """ Choose wich network to initialize """ #x,y = self.dataset.train(1).next() n_i = 1024 n_o = 62 numpy.random.seed(self.hp['seed']) self.network = MLPNetwork(n_i,n_o,size=self.hp['size']) default.load_pickled_network(self.network,'best_params/1/') def _init_costs_params(self): #finetuning self.costs = [ [costs.negative_ll(self.network.layers[-1][0].out_dict['softmax_output'],self.network.in_dict['pred'])] ] self.params = [ [self.network.get_all_params(),self.network.get_all_params()] ] def _init_monitor(self): self.monitor = monitor(self.outputs,self.ds_output,self.network,self.sub_paths,save_criterion='Pnist_Valid') def startexp(self): print self.info() for j,optimizer in enumerate(self.optimizers): print 'Optim', '#'+str(j+1) sys.stdout.flush() for i in range(self.hp['ft_ep']): optimizer.tune(self.dataset.train,self.hp['bs']) print repr(i).rjust(3),self.monitor.get_str_output() sys.stdout.flush() def run(self): self.startexp() self.monitor.dump() return True def jobman_entrypoint(state, channel): import jobman,jobman.sql,pylearn.version from jobman import DD from utils.JobmanHandling import JobHandling,jobman_insert,cartesian_product_jobs exp = MnistTSdaeExperiment(state,channel) return exp.jobhandler.start(state,channel) def standalone(state): exp = MnistTSdaeExperiment(state) exp.run() if __name__ == '__main__': HP = { 'lr':[ [ .1] ], 'ft_ep':[100], 'bs':[100], 'size':[ [300],[4000],[5000],[6000],[7000] ], 'seed':[0]} job_db_path = 'postgres://mullerx:b9f6ed1ee4@gershwin/mullerx_db/m_mlp_ift' exp_path = "m_mlp_ift.jobman_entrypoint" args = sys.argv[1:] if len(args) > 0 and args[0] == 'jobman_insert': jobman_insert(HP,job_db_path,exp_path) elif len(args) > 0 and args[0] == 'jobman_test': chanmock = DD({'COMPLETE':0,'save':(lambda:None)}) dd_hp = cartesian_product_jobs(HP) print dd_hp[0] jobman_entrypoint(dd_hp[0], chanmock) elif len(args) > 0 and args[0] == 'standalone': hp = { 'lr':[ .1], 'ft_ep':100, 'bs':100, 'size':[ 3000 ], 'seed':0} standalone(hp) else: print "Bad arguments" #jobman sqlview postgres://mullerx:b9f6ed1ee4@gershwin/mullerx_db/m_mlp_ift m_mlp_ift_view #psql -h gershwin -U mullerx -d mullerx_db #b9f6ed1ee4 #jobdispatch --condor --env=THEANO_FLAGS=floatX=float32 --repeat_jobs=5 jobman sql -n0 'postgres://mullerx:b9f6ed1ee4@gershwin/mullerx_db/m_mlp_ift' .