Mercurial > ift6266
view deep/deep_mlp/job.py @ 631:510220effb14
corrections demandees par reviewer
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Sat, 19 Mar 2011 22:44:53 -0400 |
parents | 75dbbe409578 |
children |
line wrap: on
line source
#!/usr/bin/env python # coding: utf-8 ''' Launching jobman sqlschedules postgres://ift6266h10@gershwin/ift6266h10_sandbox_db/mlp_dumi mlp_jobman.experiment mlp_jobman.conf 'n_hidden={{500,1000,2000}}' 'n_hidden_layers={{2,3}}' 'train_on={{NIST,NISTP,P07}}' 'train_subset={{DIGITS_ONLY,ALL}}' 'learning_rate_log10={{-1.,-2.,-3.}}' in mlp_jobman.conf: rng_seed=1234 L1_reg=0.0 L2_reg=0.0 n_epochs=10 minibatch_size=20 ''' import os, sys, copy, operator, time import theano import theano.tensor as T import numpy from mlp import MLP from ift6266 import datasets from pylearn.io.seriestables import * import tables from jobman.tools import DD N_INPUTS = 32*32 REDUCE_EVERY = 250 TEST_RUN = False TEST_HP = DD({'n_hidden':200, 'n_hidden_layers': 2, 'train_on':'NIST', 'train_subset':'ALL', 'learning_rate_log10':-2, 'rng_seed':1234, 'L1_reg':0.0, 'L2_reg':0.0, 'n_epochs':2, 'minibatch_size':20}) ########################################### # digits datasets # nist_digits is already in NIST_PATH and in ift6266.datasets # NOTE: for these datasets the test and valid sets are wrong # (don't correspond to the training set... they're just placeholders) from ift6266.datasets.defs import NIST_PATH, DATA_PATH TRANSFORMED_DIGITS_PATH = '/data/lisatmp/ift6266h10/data/transformed_digits' P07_digits = FTDataSet(\ train_data = [os.path.join(TRANSFORMED_DIGITS_PATH,\ 'data/P07_train'+str(i)+'_data.ft')\ for i in range(0, 100)], train_lbl = [os.path.join(TRANSFORMED_DIGITS_PATH,\ 'data/P07_train'+str(i)+'_labels.ft')\ for i in range(0,100)], test_data = [os.path.join(DATA_PATH,'data/P07_test_data.ft')], test_lbl = [os.path.join(DATA_PATH,'data/P07_test_labels.ft')], valid_data = [os.path.join(DATA_PATH,'data/P07_valid_data.ft')], valid_lbl = [os.path.join(DATA_PATH,'data/P07_valid_labels.ft')], indtype=theano.config.floatX, inscale=255., maxsize=None) #Added PNIST PNIST07_digits = FTDataSet(train_data = [os.path.join(TRANSFORMED_DIGITS_PATH,\ 'PNIST07_train'+str(i)+'_data.ft')\ for i in range(0,100)], train_lbl = [os.path.join(TRANSFORMED_DIGITS_PATH,\ 'PNIST07_train'+str(i)+'_labels.ft')\ for i in range(0,100)], test_data = [os.path.join(DATA_PATH,'data/PNIST07_test_data.ft')], test_lbl = [os.path.join(DATA_PATH,'data/PNIST07_test_labels.ft')], valid_data = [os.path.join(DATA_PATH,'data/PNIST07_valid_data.ft')], valid_lbl = [os.path.join(DATA_PATH,'data/PNIST07_valid_labels.ft')], indtype=theano.config.floatX, inscale=255., maxsize=None) # building valid_test_datasets # - on veut des dataset_obj pour les 3 datasets # - donc juste à bâtir FTDataset(train=nimportequoi, test, valid=pNIST etc.) # - on veut dans l'array mettre des pointeurs vers la fonction either test ou valid # donc PAS dataset_obj, mais dataset_obj.train (sans les parenthèses) def build_test_valid_sets(): nist_ds = datasets.nist_all() pnist_ds = datasets.PNIST07() p07_ds = datasets.nist_P07() test_valid_fns = [nist_ds.test, nist_ds.valid, pnist_ds.test, pnist_ds.valid, p07_ds.test, p07_ds.valid] test_valid_names = ["nist_all__test", "nist_all__valid", "NISTP__test", "NISTP__valid", "P07__test", "P07__valid"] return test_valid_fns, test_valid_names def add_error_series(series, error_name, hdf5_file, index_names=('minibatch_idx',), use_accumulator=False, reduce_every=250): # train series_base = ErrorSeries(error_name=error_name, table_name=error_name, hdf5_file=hdf5_file, index_names=index_names) if use_accumulator: series[error_name] = \ AccumulatorSeriesWrapper(base_series=series_base, reduce_every=reduce_every) else: series[error_name] = series_base TEST_VALID_FNS,TEST_VALID_NAMES = None, None def compute_and_save_errors(state, mlp, series, hdf5_file, minibatch_idx): global TEST_VALID_FNS,TEST_VALID_NAMES TEST_VALID_FNS,TEST_VALID_NAMES = build_test_valid_sets() # if the training is on digits only, then there'll be a 100% # error on digits in the valid/test set... just ignore them test_fn = theano.function([mlp.input], mlp.logRegressionLayer.y_pred) test_batch_size = 100 for test_ds_fn,test_ds_name in zip(TEST_VALID_FNS,TEST_VALID_NAMES): # reset error counts for every test/valid set # note: float total_errors = total_digit_errors = \ total_uppercase_errors = total_lowercase_errors = 0. total_all = total_lowercase = total_uppercase = total_digit = 0 for mb_x,mb_y in test_ds_fn(test_batch_size): digit_mask = mb_y < 10 uppercase_mask = mb_y >= 36 lowercase_mask = numpy.ones((len(mb_x),)) \ - digit_mask - uppercase_mask total_all += len(mb_x) total_digit += sum(digit_mask) total_uppercase += sum(uppercase_mask) total_lowercase += sum(lowercase_mask) predictions = test_fn(mb_x) all_errors = (mb_y != predictions) total_errors += sum(all_errors) if len(all_errors) != len(digit_mask): print "size all", all_errors.shape, " digit", digit_mask.shape total_digit_errors += sum(numpy.multiply(all_errors, digit_mask)) total_uppercase_errors += sum(numpy.multiply(all_errors, uppercase_mask)) total_lowercase_errors += sum(numpy.multiply(all_errors, lowercase_mask)) four_errors = [float(total_errors) / total_all, float(total_digit_errors) / total_digit, float(total_lowercase_errors) / total_lowercase, float(total_uppercase_errors) / total_uppercase] four_errors_names = ["all", "digits", "lower", "upper"] # record stats per set print "Errors on", test_ds_name, ",".join(four_errors_names),\ ":", ",".join([str(e) for e in four_errors]) # now in the state for err, errname in zip(four_errors, four_errors_names): error_full_name = 'error__'+test_ds_name+'_'+errname min_name = 'min_'+error_full_name minpos_name = 'minpos_'+error_full_name if state.has_key(min_name): if state[min_name] > err: state[min_name] = err state[minpos_name] = pos_str else: # also create the series add_error_series(series, error_full_name, hdf5_file, index_names=('minibatch_idx',)) state[min_name] = err state[minpos_name] = minibatch_idx state[minpos_name] = pos_str series[error_full_name].append((minibatch_idx,), err) def jobman_entrypoint(state, channel): global TEST_RUN minibatch_size = state.minibatch_size print_every = 100000 COMPUTE_ERROR_EVERY = 10**7 / minibatch_size # compute error every 10 million examples if TEST_RUN: print_every = 100 COMPUTE_ERROR_EVERY = 1000 / minibatch_size print "entrypoint, state is" print state ###################### # select dataset and dataset subset, plus adjust epoch num to make number # of examples seen independent of dataset # exemple: pour le cas DIGITS_ONLY, il faut changer le nombre d'époques # et pour le cas NIST pur (pas de transformations), il faut multiplier par 100 # en partant car on a pas les variations # compute this in terms of the P07 dataset size (=80M) MINIBATCHES_TO_SEE = state.n_epochs * 8 * (10**6) / minibatch_size if state.train_on == 'NIST' and state.train_subset == 'ALL': dataset_obj = datasets.nist_all() elif state.train_on == 'NIST' and state.train_subset == 'DIGITS_ONLY': dataset_obj = datasets.nist_digits() elif state.train_on == 'NISTP' and state.train_subset == 'ALL': dataset_obj = datasets.PNIST07() elif state.train_on == 'NISTP' and state.train_subset == 'DIGITS_ONLY': dataset_obj = PNIST07_digits elif state.train_on == 'P07' and state.train_subset == 'ALL': dataset_obj = datasets.nist_P07() elif state.train_on == 'P07' and state.train_subset == 'DIGITS_ONLY': dataset_obj = datasets.P07_digits dataset = dataset_obj if state.train_subset == 'ALL': n_classes = 62 elif state.train_subset == 'DIGITS_ONLY': n_classes = 10 else: raise NotImplementedError() ############################### # construct model print "constructing model..." x = T.matrix('x') y = T.ivector('y') rng = numpy.random.RandomState(state.rng_seed) # construct the MLP class model = MLP(rng = rng, input=x, n_in=N_INPUTS, n_hidden_layers = state.n_hidden_layers, n_hidden = state.n_hidden, n_out=n_classes) # cost and training fn cost = T.mean(model.negative_log_likelihood(y)) \ + state.L1_reg * model.L1 \ + state.L2_reg * model.L2_sqr print "L1, L2: ", state.L1_reg, state.L2_reg gradient_nll_wrt_params = [] for param in model.params: gparam = T.grad(cost, param) gradient_nll_wrt_params.append(gparam) learning_rate = 10**float(state.learning_rate_log10) print "Learning rate", learning_rate train_updates = {} for param, gparam in zip(model.params, gradient_nll_wrt_params): train_updates[param] = param - learning_rate * gparam train_fn = theano.function([x,y], cost, updates=train_updates) ####################### # create series basedir = os.getcwd() h5f = tables.openFile(os.path.join(basedir, "series.h5"), "w") series = {} add_error_series(series, "training_error", h5f, index_names=('minibatch_idx',), use_accumulator=True, reduce_every=REDUCE_EVERY) ########################## # training loop start_time = time.clock() print "begin training..." print "will train for", MINIBATCHES_TO_SEE, "examples" mb_idx = 0 while(mb_idx*minibatch_size<nb_max_exemples): last_costs = [] for mb_x, mb_y in dataset.train(minibatch_size): if TEST_RUN and mb_idx > 1000: break last_cost = train_fn(mb_x, mb_y) series["training_error"].append((mb_idx,), last_cost) last_costs.append(last_cost) if (len(last_costs)+1) % print_every == 0: print "Mean over last", print_every, "minibatches: ", numpy.mean(last_costs) last_costs = [] if (mb_idx+1) % COMPUTE_ERROR_EVERY == 0: # compute errors print "computing errors on all datasets..." print "Time since training began: ", (time.clock()-start_time)/60., "minutes" compute_and_save_errors(state, model, series, h5f, mb_idx) channel.save() sys.stdout.flush() end_time = time.clock() print "-"*80 print "Finished. Training took", (end_time-start_time)/60., "minutes" print state def run_test(): global TEST_RUN from fsml.job_management import mock_channel TEST_RUN = True jobman_entrypoint(TEST_HP, mock_channel) if __name__ == '__main__': run_test()