Mercurial > ift6266
view deep/stacked_dae/nist_sda.py @ 515:4a94be41b550
created a makefile to genereate the pdf
author | Frederic Bastien <nouiz@nouiz.org> |
---|---|
date | Tue, 01 Jun 2010 14:08:14 -0400 |
parents | 8a3af19ae272 |
children |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 # Must be imported first from config import * import ift6266 import pylearn import numpy import theano import time import pylearn.version import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams import copy import sys import os import os.path from jobman import DD import jobman, jobman.sql from pylearn.io import filetensor from utils import produit_cartesien_jobs, jobs_from_reinsert_list from sgd_optimization import SdaSgdOptimizer #from ift6266.utils.scalar_series import * from ift6266.utils.seriestables import * import tables from ift6266 import datasets ''' Function called by jobman upon launching each job Its path is the one given when inserting jobs: see EXPERIMENT_PATH ''' def jobman_entrypoint(state, channel): # record mercurial versions of each package pylearn.version.record_versions(state,[theano,ift6266,pylearn]) # TODO: remove this, bad for number of simultaneous requests on DB channel.save() # For test runs, we don't want to use the whole dataset so # reduce it to fewer elements if asked to. rtt = None if state.has_key('reduce_train_to'): rtt = state['reduce_train_to'] elif REDUCE_TRAIN_TO: rtt = REDUCE_TRAIN_TO n_ins = 32*32 n_outs = 62 # 10 digits, 26*2 (lower, capitals) examples_per_epoch = NIST_ALL_TRAIN_SIZE if rtt: examples_per_epoch = rtt series = create_series(state.num_hidden_layers) print "Creating optimizer with state, ", state dataset = None if rtt: dataset = datasets.nist_all(maxsize=rtt) else: dataset = datasets.nist_all() optimizer = SdaSgdOptimizer(dataset=dataset, hyperparameters=state, \ n_ins=n_ins, n_outs=n_outs,\ examples_per_epoch=examples_per_epoch, \ series=series, save_params=SAVE_PARAMS) optimizer.pretrain(dataset) channel.save() optimizer.finetune(dataset) channel.save() return channel.COMPLETE # These Series objects are used to save various statistics # during the training. def create_series(num_hidden_layers): # Replace series we don't want to save with DummySeries, e.g. # series['training_error'] = DummySeries() series = {} basedir = os.getcwd() h5f = tables.openFile(os.path.join(basedir, "series.h5"), "w") # reconstruction reconstruction_base = \ ErrorSeries(error_name="reconstruction_error", table_name="reconstruction_error", hdf5_file=h5f, index_names=('epoch','minibatch'), title="Reconstruction error (mean over "+str(REDUCE_EVERY)+" minibatches)") series['reconstruction_error'] = \ AccumulatorSeriesWrapper(base_series=reconstruction_base, reduce_every=REDUCE_EVERY) # train training_base = \ ErrorSeries(error_name="training_error", table_name="training_error", hdf5_file=h5f, index_names=('epoch','minibatch'), title="Training error (mean over "+str(REDUCE_EVERY)+" minibatches)") series['training_error'] = \ AccumulatorSeriesWrapper(base_series=training_base, reduce_every=REDUCE_EVERY) # valid and test are not accumulated/mean, saved directly series['validation_error'] = \ ErrorSeries(error_name="validation_error", table_name="validation_error", hdf5_file=h5f, index_names=('epoch','minibatch')) series['test_error'] = \ ErrorSeries(error_name="test_error", table_name="test_error", hdf5_file=h5f, index_names=('epoch','minibatch')) param_names = [] for i in range(num_hidden_layers): param_names += ['layer%d_W'%i, 'layer%d_b'%i, 'layer%d_bprime'%i] param_names += ['logreg_layer_W', 'logreg_layer_b'] # comment out series we don't want to save series['params'] = SharedParamsStatisticsWrapper( new_group_name="params", base_group="/", arrays_names=param_names, hdf5_file=h5f, index_names=('epoch',)) return series # Perform insertion into the Postgre DB based on combination # of hyperparameter values above # (see comment for produit_cartesien_jobs() to know how it works) def jobman_insert_nist(): jobs = produit_cartesien_jobs(JOB_VALS) db = jobman.sql.db(JOBDB) for job in jobs: job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) jobman.sql.insert_dict(job, db) print "inserted" def jobman_REinsert_nist(): jobs = jobs_from_reinsert_list(REINSERT_COLS, REINSERT_JOB_VALS) db = jobman.sql.db(JOBDB) for job in jobs: job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) jobman.sql.insert_dict(job, db) print "reinserted" if __name__ == '__main__': args = sys.argv[1:] #if len(args) > 0 and args[0] == 'load_nist': # test_load_nist() if len(args) > 0 and args[0] == 'jobman_insert': jobman_insert_nist() if len(args) > 0 and args[0] == 'reinsert': jobman_REinsert_nist() elif len(args) > 0 and args[0] == 'test_jobman_entrypoint': chanmock = DD({'COMPLETE':0,'save':(lambda:None)}) jobman_entrypoint(DEFAULT_HP_NIST, chanmock) else: print "Bad arguments"