Mercurial > ift6266
view deep/rbm/mnistrbm.py @ 437:479f2f518fc9
added Training with More Classes than Necessary
author | Guillaume Sicard <guitch21@gmail.com> |
---|---|
date | Mon, 03 May 2010 06:17:54 -0400 |
parents | 45156cbf6722 |
children |
line wrap: on
line source
import sys import os, os.path import numpy as N import theano import theano.tensor as T from crbm import CRBM, ConvolutionParams from pylearn.datasets import MNIST from pylearn.io.image_tiling import tile_raster_images import Image from pylearn.io.seriestables import * import tables IMAGE_OUTPUT_DIR = 'img/' REDUCE_EVERY = 100 def filename_from_time(suffix): import datetime return str(datetime.datetime.now()) + suffix + ".png" # Just a shortcut for a common case where we need a few # related Error (float) series def get_accumulator_series_array( \ hdf5_file, group_name, series_names, reduce_every, index_names=('epoch','minibatch'), stdout_too=True, skip_hdf5_append=False): all_series = [] hdf5_file.createGroup('/', group_name) other_targets = [] if stdout_too: other_targets = [StdoutAppendTarget()] for sn in series_names: series_base = \ ErrorSeries(error_name=sn, table_name=sn, hdf5_file=hdf5_file, hdf5_group='/'+group_name, index_names=index_names, other_targets=other_targets, skip_hdf5_append=skip_hdf5_append) all_series.append( \ AccumulatorSeriesWrapper( \ base_series=series_base, reduce_every=reduce_every)) ret_wrapper = SeriesArrayWrapper(all_series) return ret_wrapper class ExperienceRbm(object): def __init__(self): self.mnist = MNIST.full()#first_10k() datasets = load_data(dataset) train_set_x, train_set_y = datasets[0] test_set_x , test_set_y = datasets[2] batch_size = 100 # size of the minibatch # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.value.shape[0] / batch_size # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch x = T.matrix('x') # the data is presented as rasterized images rng = numpy.random.RandomState(123) theano_rng = RandomStreams( rng.randint(2**30)) # initialize storage fot the persistent chain (state = hidden layer of chain) persistent_chain = theano.shared(numpy.zeros((batch_size, 500))) # construct the RBM class self.rbm = RBM( input = x, n_visible=28*28, \ n_hidden = 500,numpy_rng = rng, theano_rng = theano_rng) # get the cost and the gradient corresponding to one step of CD self.init_series() def init_series(self): series = {} basedir = os.getcwd() h5f = tables.openFile(os.path.join(basedir, "series.h5"), "w") cd_series_names = self.rbm.cd_return_desc series['cd'] = \ get_accumulator_series_array( \ h5f, 'cd', cd_series_names, REDUCE_EVERY, stdout_too=True) # so first we create the names for each table, based on # position of each param in the array params_stdout = StdoutAppendTarget("\n------\nParams") series['params'] = SharedParamsStatisticsWrapper( new_group_name="params", base_group="/", arrays_names=['W','b_h','b_x'], hdf5_file=h5f, index_names=('epoch','minibatch'), other_targets=[params_stdout]) self.series = series def train(self, persistent, learning_rate): training_epochs = 15 #get the cost and the gradient corresponding to one step of CD if persistant: persistent_chain = theano.shared(numpy.zeros((batch_size, self.rbm.n_hidden))) cost, updates = self.rbm.cd(lr=learning_rate, persistent=persistent_chain) else: cost, updates = self.rbm.cd(lr=learning_rate) dirname = 'lr=%.5f'%self.rbm.learning_rate os.makedirs(dirname) os.chdir(dirname) # the purpose of train_rbm is solely to update the RBM parameters train_rbm = theano.function([index], cost, updates = updates, givens = { x: train_set_x[index*batch_size:(index+1)*batch_size]}) plotting_time = 0. start_time = time.clock() # go through training epochs for epoch in xrange(training_epochs): # go through the training set mean_cost = [] for batch_index in xrange(n_train_batches): mean_cost += [train_rbm(batch_index)] pretraining_time = (end_time - start_time) def sample_from_rbm(self, gibbs_steps, test_set_x): # find out the number of test samples number_of_test_samples = test_set_x.value.shape[0] # pick random test examples, with which to initialize the persistent chain test_idx = rng.randint(number_of_test_samples-20) persistent_vis_chain = theano.shared(test_set_x.value[test_idx:test_idx+20]) # define one step of Gibbs sampling (mf = mean-field) [hid_mf, hid_sample, vis_mf, vis_sample] = self.rbm.gibbs_vhv(persistent_vis_chain) # the sample at the end of the channel is returned by ``gibbs_1`` as # its second output; note that this is computed as a binomial draw, # therefore it is formed of ints (0 and 1) and therefore needs to # be converted to the same dtype as ``persistent_vis_chain`` vis_sample = T.cast(vis_sample, dtype=theano.config.floatX) # construct the function that implements our persistent chain # we generate the "mean field" activations for plotting and the actual samples for # reinitializing the state of our persistent chain sample_fn = theano.function([], [vis_mf, vis_sample], updates = { persistent_vis_chain:vis_sample}) # sample the RBM, plotting every `plot_every`-th sample; do this # until you plot at least `n_samples` n_samples = 10 plot_every = 1000 for idx in xrange(n_samples): # do `plot_every` intermediate samplings of which we do not care for jdx in xrange(plot_every): vis_mf, vis_sample = sample_fn() # construct image image = PIL.Image.fromarray(tile_raster_images( X = vis_mf, img_shape = (28,28), tile_shape = (10,10), tile_spacing = (1,1) ) ) image.save('sample_%i_step_%i.png'%(idx,idx*jdx)) if __name__ == '__main__': mc = ExperienceRbm() mc.train()