view datasets/ftfile.py @ 207:43af74a348ac

Merge branches from main repo.
author Arnaud Bergeron <abergeron@gmail.com>
date Thu, 04 Mar 2010 20:43:21 -0500
parents f0f47b045cbf
children 1faae5079522
line wrap: on
line source

from pylearn.io.filetensor import _read_header, _prod
import numpy, theano
from dataset import DataSet
from dsetiter import DataIterator
from itertools import izip, imap

class FTFile(object):
    def __init__(self, fname, scale=1, dtype=None):
        r"""
        Tests:
            >>> f = FTFile('/data/lisa/data/nist/by_class/digits/digits_test_labels.ft')
        """
        self.file = open(fname, 'rb')
        self.magic_t, self.elsize, _, self.dim, _ = _read_header(self.file, False)
        self.size = self.dim[0]
        self.scale = scale
        self.dtype = dtype

    def skip(self, num):
        r"""
        Skips `num` items in the file.

        If `num` is negative, skips size-num.

        Tests:
            >>> f = FTFile('/data/lisa/data/nist/by_class/digits/digits_test_labels.ft')
            >>> f.size
            58646
            >>> f.elsize
            4
            >>> f.file.tell()
            20
            >>> f.skip(1000)
            >>> f.file.tell()
            4020
            >>> f.size
            57646
            >>> f = FTFile('/data/lisa/data/nist/by_class/digits/digits_test_labels.ft')
            >>> f.size
            58646
            >>> f.file.tell()
            20
            >>> f.skip(-1000)
            >>> f.file.tell()
            230604
            >>> f.size
            1000
        """
        if num < 0:
            num += self.size
        if num < 0:
            raise ValueError('Skipping past the start of the file')
        if num >= self.size:
            self.size = 0
        else:
            self.size -= num
            f_start = self.file.tell()
            self.file.seek(f_start + (self.elsize * _prod(self.dim[1:]) * num))
    
    def read(self, num):
        r"""
        Reads `num` elements from the file and return the result as a
        numpy matrix.  Last read is truncated.

        Tests:
            >>> f = FTFile('/data/lisa/data/nist/by_class/digits/digits_test_labels.ft')
            >>> f.read(1)
            array([6], dtype=int32)
            >>> f.read(10)
            array([7, 4, 7, 5, 6, 4, 8, 0, 9, 6], dtype=int32)
            >>> f.skip(58630)
            >>> f.read(10)
            array([9, 2, 4, 2, 8], dtype=int32)
            >>> f.read(10)
            array([], dtype=int32)
            >>> f = FTFile('/data/lisa/data/nist/by_class/digits/digits_test_data.ft')
            >>> f.read(1)
            array([[0, 0, 0, ..., 0, 0, 0]], dtype=uint8)
        """
        if num > self.size:
            num = self.size
        self.dim[0] = num
        self.size -= num
        res = numpy.fromfile(self.file, dtype=self.magic_t, count=_prod(self.dim)).reshape(self.dim)
        if self.dtype is not None:
            res = res.astype(self.dtype)
        if self.scale != 1:
            res /= self.scale
        return res

class FTSource(object):
    def __init__(self, file, skip=0, size=None, dtype=None, scale=1):
        r"""
        Create a data source from a possible subset of a .ft file.

        Parameters:
            `file` (string) -- the filename
            `skip` (int, optional) -- amount of examples to skip from
                                      the start of the file.  If
                                      negative, skips filesize - skip.
            `size` (int, optional) -- truncates number of examples
                                      read (after skipping).  If
                                      negative truncates to 
                                      filesize - size 
                                      (also after skipping).
            `dtype` (dtype, optional) -- convert the data to this
                                         dtype after reading.
            `scale` (number, optional) -- scale (that is divide) the
                                          data by this number (after
                                          dtype conversion, if any).

        Tests:
           >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft')
           >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft', size=1000)
           >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft', skip=10)
           >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft', skip=100, size=120)
        """
        self.file = file
        self.skip = skip
        self.size = size
        self.dtype = dtype
        self.scale = scale
    
    def open(self):
        r"""
        Returns an FTFile that corresponds to this dataset.
        
        Tests:
           >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft')
           >>> f = s.open()
           >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft', size=1)
           >>> len(s.open().read(2))
           1
           >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft', skip=57646)
           >>> s.open().size
           1000
           >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft', skip=57646, size=1)
           >>> s.open().size
           1
           >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft', size=-10)
           >>> s.open().size
           58636
        """
        f = FTFile(self.file, scale=self.scale, dtype=self.dtype)
        if self.skip != 0:
            f.skip(self.skip)
        if self.size is not None and self.size < f.size:
            if self.size < 0:
                f.size += self.size
            else:
                f.size = self.size
        return f

class FTData(object):
    r"""
    This is a list of FTSources.
    """
    def __init__(self, datafiles, labelfiles, skip=0, size=None,
                 inscale=1, indtype=None, outscale=1, outdtype=None):
        self.inputs = [FTSource(f, skip, size, scale=inscale, dtype=indtype)
                       for f in  datafiles]
        self.outputs = [FTSource(f, skip, size, scale=outscale, dtype=outdtype)
                        for f in labelfiles]

    def open_inputs(self):
        return [f.open() for f in self.inputs]

    def open_outputs(self):
        return [f.open() for f in self.outputs]
    

class FTDataSet(DataSet):
    def __init__(self, train_data, train_lbl, test_data, test_lbl, valid_data=None, valid_lbl=None, indtype=None, outdtype=None, inscale=1, outscale=1):
        r"""
        Defines a DataSet from a bunch of files.
        
        Parameters:
           `train_data` -- list of train data files
           `train_label` -- list of train label files (same length as `train_data`)
           `test_data`, `test_labels` -- same thing as train, but for
                                         test.  The number of files
                                         can differ from train.
           `valid_data`, `valid_labels` -- same thing again for validation.
                                           (optional)
           `indtype`, `outdtype`,  -- see FTSource.__init__()
           `inscale`, `outscale`      (optional)
                                                             

        If `valid_data` and `valid_labels` are not supplied then a sample
        approximately equal in size to the test set is taken from the train 
        set.
        """
        if valid_data is None:
            total_valid_size = sum(FTFile(td).size for td in test_data)
            valid_size = total_valid_size/len(train_data)
            self._train = FTData(train_data, train_lbl, size=-valid_size)
            self._valid = FTData(train_data, train_lbl, skip=-valid_size)
        else:
            self._train = FTData(train_data, train_lbl)
            self._valid = FTData(valid_data, valid_lbl)
        self._test = FTData(test_data, test_lbl)

    def _return_it(self, batchsize, bufsize, ftdata):
        return izip(DataIterator(ftdata.open_inputs(), batchsize, bufsize),
                    DataIterator(ftdata.open_outputs(), batchsize, bufsize))