view data_generation/transformations/image_tiling.py @ 239:42005ec87747

Mergé (manuellement) les changements de Sylvain pour utiliser le code de dataset d'Arnaud, à cette différence près que je n'utilse pas les givens. J'ai probablement une approche différente pour limiter la taille du dataset dans mon débuggage, aussi.
author fsavard
date Mon, 15 Mar 2010 18:30:21 -0400
parents 1f5937e9e530
children
line wrap: on
line source

"""
Illustrate filters (or data) in a grid of small image-shaped tiles.

Note: taken from the pylearn codebase on Feb 4, 2010 (fsavard)
"""

import numpy
from PIL import Image

def scale_to_unit_interval(ndar,eps=1e-8):
    ndar = ndar.copy()
    ndar -= ndar.min()
    ndar *= 1.0 / (ndar.max()+eps)
    return ndar

def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0,0),
        scale_rows_to_unit_interval=True, 
        output_pixel_vals=True
        ):
    """
    Transform an array with one flattened image per row, into an array in which images are
    reshaped and layed out like tiles on a floor.

    This function is useful for visualizing datasets whose rows are images, and also columns of
    matrices for transforming those rows (such as the first layer of a neural net).

    :type X: a 2-D ndarray or a tuple of 4 channels, elements of which can be 2-D ndarrays or None
    :param X: a 2-D array in which every row is a flattened image.
    :type img_shape: tuple; (height, width)
    :param img_shape: the original shape of each image
    :type tile_shape: tuple; (rows, cols)
    :param tile_shape: the number of images to tile (rows, cols)

    :returns: array suitable for viewing as an image.  (See:`PIL.Image.fromarray`.)
    :rtype: a 2-d array with same dtype as X.

    """
    assert len(img_shape) == 2
    assert len(tile_shape) == 2
    assert len(tile_spacing) == 2

    out_shape = [(ishp + tsp) * tshp - tsp for ishp, tshp, tsp 
        in zip(img_shape, tile_shape, tile_spacing)]

    if isinstance(X, tuple):
        assert len(X) == 4
        if output_pixel_vals:
            out_array = numpy.zeros((out_shape[0], out_shape[1], 4), dtype='uint8')
        else:
            out_array = numpy.zeros((out_shape[0], out_shape[1], 4), dtype=X.dtype)

        #colors default to 0, alpha defaults to 1 (opaque)
        if output_pixel_vals:
            channel_defaults = [0,0,0,255]
        else:
            channel_defaults = [0.,0.,0.,1.]

        for i in xrange(4):
            if X[i] is None:
                out_array[:,:,i] = numpy.zeros(out_shape,
                        dtype='uint8' if output_pixel_vals else out_array.dtype
                        )+channel_defaults[i]
            else:
                out_array[:,:,i] = tile_raster_images(X[i], img_shape, tile_shape, tile_spacing, scale_rows_to_unit_interval, output_pixel_vals)
        return out_array

    else:
        H, W = img_shape
        Hs, Ws = tile_spacing

        out_array = numpy.zeros(out_shape, dtype='uint8' if output_pixel_vals else X.dtype)
        for tile_row in xrange(tile_shape[0]):
            for tile_col in xrange(tile_shape[1]):
                if tile_row * tile_shape[1] + tile_col < X.shape[0]:
                    if scale_rows_to_unit_interval:
                        this_img = scale_to_unit_interval(X[tile_row * tile_shape[1] + tile_col].reshape(img_shape))
                    else:
                        this_img = X[tile_row * tile_shape[1] + tile_col].reshape(img_shape)
                    out_array[
                        tile_row * (H+Hs):tile_row*(H+Hs)+H,
                        tile_col * (W+Ws):tile_col*(W+Ws)+W
                        ] \
                        = this_img * (255 if output_pixel_vals else 1)
        return out_array