Mercurial > ift6266
view deep/stacked_dae/nist_sda.py @ 200:3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
author | Arnaud Bergeron <abergeron@gmail.com> |
---|---|
date | Tue, 02 Mar 2010 20:16:30 -0500 |
parents | 3632e6258642 |
children | e656edaedb48 |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 import ift6266 import pylearn import numpy import theano import time import pylearn.version import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams import copy import sys import os import os.path from jobman import DD import jobman, jobman.sql from pylearn.io import filetensor from utils import produit_croise_jobs from sgd_optimization import SdaSgdOptimizer from ift6266.utils.scalar_series import * TEST_CONFIG = False NIST_ALL_LOCATION = '/data/lisa/data/nist/by_class/all' JOBDB = 'postgres://ift6266h10@gershwin/ift6266h10_sandbox_db/fsavard_sda2' REDUCE_TRAIN_TO = None MAX_FINETUNING_EPOCHS = 1000 REDUCE_EVERY = 1000 # number of minibatches before taking means for valid error etc. if TEST_CONFIG: REDUCE_TRAIN_TO = 1000 MAX_FINETUNING_EPOCHS = 2 REDUCE_EVERY = 10 EXPERIMENT_PATH = "ift6266.deep.stacked_dae.nist_sda.jobman_entrypoint" JOB_VALS = {'pretraining_lr': [0.1, 0.01],#, 0.001],#, 0.0001], 'pretraining_epochs_per_layer': [10,20], 'hidden_layers_sizes': [300,800], 'corruption_levels': [0.1,0.2,0.3], 'minibatch_size': [20], 'max_finetuning_epochs':[MAX_FINETUNING_EPOCHS], 'finetuning_lr':[0.1, 0.01], #0.001 was very bad, so we leave it out 'num_hidden_layers':[2,3]} # Just useful for tests... minimal number of epochs DEFAULT_HP_NIST = DD({'finetuning_lr':0.1, 'pretraining_lr':0.1, 'pretraining_epochs_per_layer':20, 'max_finetuning_epochs':2, 'hidden_layers_sizes':300, 'corruption_levels':0.2, 'minibatch_size':20, #'reduce_train_to':300, 'num_hidden_layers':2}) def jobman_entrypoint(state, channel): pylearn.version.record_versions(state,[theano,ift6266,pylearn]) channel.save() workingdir = os.getcwd() print "Will load NIST" nist = NIST(20) print "NIST loaded" rtt = None if state.has_key('reduce_train_to'): rtt = state['reduce_train_to'] elif REDUCE_TRAIN_TO: rtt = REDUCE_TRAIN_TO if rtt: print "Reducing training set to "+str( rtt)+ " examples" nist.reduce_train_set(rtt) train,valid,test = nist.get_tvt() dataset = (train,valid,test) n_ins = 32*32 n_outs = 62 # 10 digits, 26*2 (lower, capitals) hls = state.hidden_layers_sizes cl = state.corruption_levels nhl = state.num_hidden_layers state.hidden_layers_sizes = [hls] * nhl state.corruption_levels = [cl] * nhl # b,b',W for each hidden layer + b,W of last layer (logreg) numparams = nhl * 3 + 2 series_mux = None series_mux = create_series(workingdir, numparams) print "Creating optimizer with state, ", state optimizer = SdaSgdOptimizer(dataset=dataset, hyperparameters=state, \ n_ins=n_ins, n_outs=n_outs,\ input_divider=255.0, series_mux=series_mux) optimizer.pretrain() channel.save() optimizer.finetune() channel.save() pylearn.version.record_versions(state,[theano,ift6266,pylearn]) channel.save() return channel.COMPLETE def create_series(basedir, numparams): mux = SeriesMultiplexer() # comment out series we don't want to save mux.add_series(AccumulatorSeries(name="reconstruction_error", reduce_every=REDUCE_EVERY, # every 1000 batches, we take the mean and save mean=True, directory=basedir, flush_every=1)) mux.add_series(AccumulatorSeries(name="training_error", reduce_every=REDUCE_EVERY, # every 1000 batches, we take the mean and save mean=True, directory=basedir, flush_every=1)) mux.add_series(BaseSeries(name="validation_error", directory=basedir, flush_every=1)) mux.add_series(BaseSeries(name="test_error", directory=basedir, flush_every=1)) mux.add_series(ParamsArrayStats(numparams,name="params",directory=basedir)) return mux def jobman_insert_nist(): jobs = produit_croise_jobs(JOB_VALS) db = jobman.sql.db(JOBDB) for job in jobs: job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) jobman.sql.insert_dict(job, db) print "inserted" class NIST: def __init__(self, minibatch_size, basepath=None, reduce_train_to=None): global NIST_ALL_LOCATION self.minibatch_size = minibatch_size self.basepath = basepath and basepath or NIST_ALL_LOCATION self.set_filenames() # arrays of 2 elements: .x, .y self.train = [None, None] self.test = [None, None] self.load_train_test() self.valid = [[], []] self.split_train_valid() if reduce_train_to: self.reduce_train_set(reduce_train_to) def get_tvt(self): return self.train, self.valid, self.test def set_filenames(self): self.train_files = ['all_train_data.ft', 'all_train_labels.ft'] self.test_files = ['all_test_data.ft', 'all_test_labels.ft'] def load_train_test(self): self.load_data_labels(self.train_files, self.train) self.load_data_labels(self.test_files, self.test) def load_data_labels(self, filenames, pair): for i, fn in enumerate(filenames): f = open(os.path.join(self.basepath, fn)) pair[i] = filetensor.read(f) f.close() def reduce_train_set(self, max): self.train[0] = self.train[0][:max] self.train[1] = self.train[1][:max] if max < len(self.test[0]): for ar in (self.test, self.valid): ar[0] = ar[0][:max] ar[1] = ar[1][:max] def split_train_valid(self): test_len = len(self.test[0]) new_train_x = self.train[0][:-test_len] new_train_y = self.train[1][:-test_len] self.valid[0] = self.train[0][-test_len:] self.valid[1] = self.train[1][-test_len:] self.train[0] = new_train_x self.train[1] = new_train_y def test_load_nist(): print "Will load NIST" import time t1 = time.time() nist = NIST(20) t2 = time.time() print "NIST loaded. time delta = ", t2-t1 tr,v,te = nist.get_tvt() print "Lenghts: ", len(tr[0]), len(v[0]), len(te[0]) raw_input("Press any key") # hp for hyperparameters def sgd_optimization_nist(hp=None, dataset_dir='/data/lisa/data/nist'): global DEFAULT_HP_NIST hp = hp and hp or DEFAULT_HP_NIST print "Will load NIST" import time t1 = time.time() nist = NIST(20, reduce_train_to=100) t2 = time.time() print "NIST loaded. time delta = ", t2-t1 train,valid,test = nist.get_tvt() dataset = (train,valid,test) print train[0][15] print type(train[0][1]) print "Lengths train, valid, test: ", len(train[0]), len(valid[0]), len(test[0]) n_ins = 32*32 n_outs = 62 # 10 digits, 26*2 (lower, capitals) optimizer = SdaSgdOptimizer(dataset, hp, n_ins, n_outs, input_divider=255.0) optimizer.train() if __name__ == '__main__': import sys args = sys.argv[1:] if len(args) > 0 and args[0] == 'load_nist': test_load_nist() elif len(args) > 0 and args[0] == 'jobman_insert': jobman_insert_nist() elif len(args) > 0 and args[0] == 'test_jobman_entrypoint': def f(): pass chanmock = DD({'COMPLETE':0,'save':f}) jobman_entrypoint(DEFAULT_HP_NIST, chanmock) elif len(args) > 0 and args[0] == 'estimate': estimate_total_time() else: sgd_optimization_nist()