Mercurial > ift6266
view scripts/stacked_dae/utils.py @ 139:7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
author | fsavard |
---|---|
date | Mon, 22 Feb 2010 13:38:25 -0500 |
parents | 5c79a2557f2f |
children |
line wrap: on
line source
#!/usr/bin/python from jobman import DD # from pylearn codebase def update_locals(obj, dct): if 'self' in dct: del dct['self'] obj.__dict__.update(dct) def produit_croise_jobs(val_dict): job_list = [DD()] all_keys = val_dict.keys() for key in all_keys: possible_values = val_dict[key] new_job_list = [] for val in possible_values: for job in job_list: to_insert = job.copy() to_insert.update({key: val}) new_job_list.append(to_insert) job_list = new_job_list return job_list def test_produit_croise_jobs(): vals = {'a': [1,2], 'b': [3,4,5]} print produit_croise_jobs(vals) # taken from http://stackoverflow.com/questions/276052/how-to-get-current-cpu-and-ram-usage-in-python """Simple module for getting amount of memory used by a specified user's processes on a UNIX system. It uses UNIX ps utility to get the memory usage for a specified username and pipe it to awk for summing up per application memory usage and return the total. Python's Popen() from subprocess module is used for spawning ps and awk. """ import subprocess class MemoryMonitor(object): def __init__(self, username): """Create new MemoryMonitor instance.""" self.username = username def usage(self): """Return int containing memory used by user's processes.""" self.process = subprocess.Popen("ps -u %s -o rss | awk '{sum+=$1} END {print sum}'" % self.username, shell=True, stdout=subprocess.PIPE, ) self.stdout_list = self.process.communicate()[0].split('\n') return int(self.stdout_list[0])