Mercurial > ift6266
view code_tutoriel/logistic_sgd.py @ 135:36010ff90255
Added script to test truetype font files validity (corruption)
author | boulanni <nicolas_boulanger@hotmail.com> |
---|---|
date | Sat, 20 Feb 2010 02:10:30 -0500 |
parents | bcc87d3e33a3 |
children | 4bc5eeec6394 |
line wrap: on
line source
""" This tutorial introduces logistic regression using Theano and stochastic gradient descent. Logistic regression is a probabilistic, linear classifier. It is parametrized by a weight matrix :math:`W` and a bias vector :math:`b`. Classification is done by projecting data points onto a set of hyperplanes, the distance to which is used to determine a class membership probability. Mathematically, this can be written as: .. math:: P(Y=i|x, W,b) &= softmax_i(W x + b) \\ &= \frac {e^{W_i x + b_i}} {\sum_j e^{W_j x + b_j}} The output of the model or prediction is then done by taking the argmax of the vector whose i'th element is P(Y=i|x). .. math:: y_{pred} = argmax_i P(Y=i|x,W,b) This tutorial presents a stochastic gradient descent optimization method suitable for large datasets, and a conjugate gradient optimization method that is suitable for smaller datasets. References: - textbooks: "Pattern Recognition and Machine Learning" - Christopher M. Bishop, section 4.3.2 """ __docformat__ = 'restructedtext en' import numpy, cPickle, gzip import time import theano import theano.tensor as T import theano.tensor.nnet class LogisticRegression(object): """Multi-class Logistic Regression Class The logistic regression is fully described by a weight matrix :math:`W` and bias vector :math:`b`. Classification is done by projecting data points onto a set of hyperplanes, the distance to which is used to determine a class membership probability. """ def __init__(self, input, n_in, n_out): """ Initialize the parameters of the logistic regression :param input: symbolic variable that describes the input of the architecture (one minibatch) :param n_in: number of input units, the dimension of the space in which the datapoints lie :param n_out: number of output units, the dimension of the space in which the labels lie """ # initialize with 0 the weights W as a matrix of shape (n_in, n_out) self.W = theano.shared( value=numpy.zeros((n_in,n_out), dtype = theano.config.floatX) ) # initialize the baises b as a vector of n_out 0s self.b = theano.shared( value=numpy.zeros((n_out,), dtype = theano.config.floatX) ) # compute vector of class-membership probabilities in symbolic form self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) # compute prediction as class whose probability is maximal in # symbolic form self.y_pred=T.argmax(self.p_y_given_x, axis=1) def negative_log_likelihood(self, y): """Return the mean of the negative log-likelihood of the prediction of this model under a given target distribution. .. math:: \frac{1}{|\mathcal{D}|} \mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ \ell (\theta=\{W,b\}, \mathcal{D}) :param y: corresponds to a vector that gives for each example the :correct label Note: we use the mean instead of the sum so that the learning rate is less dependent on the batch size """ return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) def errors(self, y): """Return a float representing the number of errors in the minibatch over the total number of examples of the minibatch ; zero one loss over the size of the minibatch """ # check if y has same dimension of y_pred if y.ndim != self.y_pred.ndim: raise TypeError('y should have the same shape as self.y_pred', ('y', target.type, 'y_pred', self.y_pred.type)) # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError() def sgd_optimization_mnist( learning_rate=0.01, n_iter=100): """ Demonstrate stochastic gradient descent optimization of a log-linear model This is demonstrated on MNIST. :param learning_rate: learning rate used (factor for the stochastic gradient :param n_iter: maximal number of iterations ot run the optimizer """ # Load the dataset f = gzip.open('mnist.pkl.gz','rb') train_set, valid_set, test_set = cPickle.load(f) f.close() # make minibatches of size 20 batch_size = 20 # sized of the minibatch # Dealing with the training set # get the list of training images (x) and their labels (y) (train_set_x, train_set_y) = train_set # initialize the list of training minibatches with empty list train_batches = [] for i in xrange(0, len(train_set_x), batch_size): # add to the list of minibatches the minibatch starting at # position i, ending at position i+batch_size # a minibatch is a pair ; the first element of the pair is a list # of datapoints, the second element is the list of corresponding # labels train_batches = train_batches + \ [(train_set_x[i:i+batch_size], train_set_y[i:i+batch_size])] # Dealing with the validation set (valid_set_x, valid_set_y) = valid_set # initialize the list of validation minibatches valid_batches = [] for i in xrange(0, len(valid_set_x), batch_size): valid_batches = valid_batches + \ [(valid_set_x[i:i+batch_size], valid_set_y[i:i+batch_size])] # Dealing with the testing set (test_set_x, test_set_y) = test_set # initialize the list of testing minibatches test_batches = [] for i in xrange(0, len(test_set_x), batch_size): test_batches = test_batches + \ [(test_set_x[i:i+batch_size], test_set_y[i:i+batch_size])] ishape = (28,28) # this is the size of MNIST images # allocate symbolic variables for the data x = T.fmatrix() # the data is presented as rasterized images y = T.lvector() # the labels are presented as 1D vector of # [long int] labels # construct the logistic regression class classifier = LogisticRegression( \ input=x.reshape((batch_size,28*28)), n_in=28*28, n_out=10) # the cost we minimize during training is the negative log likelihood of # the model in symbolic format cost = classifier.negative_log_likelihood(y) # compiling a Theano function that computes the mistakes that are made by # the model on a minibatch test_model = theano.function([x,y], classifier.errors(y)) # compute the gradient of cost with respect to theta = (W,b) g_W = T.grad(cost, classifier.W) g_b = T.grad(cost, classifier.b) # specify how to update the parameters of the model as a dictionary updates ={classifier.W: classifier.W - learning_rate*g_W,\ classifier.b: classifier.b - learning_rate*g_b} # compiling a Theano function `train_model` that returns the cost, but in # the same time updates the parameter of the model based on the rules # defined in `updates` train_model = theano.function([x, y], cost, updates = updates ) n_minibatches = len(train_batches) # number of minibatchers # early-stopping parameters patience = 5000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = n_minibatches # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = float('inf') test_score = 0. start_time = time.clock() # have a maximum of `n_iter` iterations through the entire dataset for iter in xrange(n_iter* n_minibatches): # get epoch and minibatch index epoch = iter / n_minibatches minibatch_index = iter % n_minibatches # get the minibatches corresponding to `iter` modulo # `len(train_batches)` x,y = train_batches[ minibatch_index ] cost_ij = train_model(x,y) if (iter+1) % validation_frequency == 0: # compute zero-one loss on validation set this_validation_loss = 0. for x,y in valid_batches: # sum up the errors for each minibatch this_validation_loss += test_model(x,y) # get the average by dividing with the number of minibatches this_validation_loss /= len(valid_batches) print('epoch %i, minibatch %i/%i, validation error %f %%' % \ (epoch, minibatch_index+1,n_minibatches, \ this_validation_loss*100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold : patience = max(patience, iter * patience_increase) best_validation_loss = this_validation_loss # test it on the test set test_score = 0. for x,y in test_batches: test_score += test_model(x,y) test_score /= len(test_batches) print((' epoch %i, minibatch %i/%i, test error of best ' 'model %f %%') % \ (epoch, minibatch_index+1, n_minibatches,test_score*100.)) if patience <= iter : break end_time = time.clock() print(('Optimization complete with best validation score of %f %%,' 'with test performance %f %%') % (best_validation_loss * 100., test_score*100.)) print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) if __name__ == '__main__': sgd_optimization_mnist()