Mercurial > ift6266
view data_generation/transformations/thick.py @ 358:31641a84e0ae
Initial commit for the experimental setup of the denoising convolutional network
author | humel |
---|---|
date | Thu, 22 Apr 2010 00:49:42 -0400 |
parents | 1f5937e9e530 |
children |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 ''' Simple implementation of random thickness deformation using morphological operation of scipy. Only one morphological operation applied (dilation or erosion), the kernel is random out of a list of 12 symmetric kernels. (only 5 to be chosen for erosion because it can hurt the recognizability of the charater and 12 for dilation). Author: Xavier Glorot ''' import scipy.ndimage.morphology import numpy as N class Thick(): def __init__(self,complexity = 1): #---------- private attributes self.__nx__ = 32 #xdim of the images self.__ny__ = 32 #ydim of the images self.__erodemax__ = 5 #nb of index max of erode structuring elements self.__dilatemax__ = 9 #nb of index max of dilation structuring elements self.__structuring_elements__ = [N.asarray([[1,1]]),N.asarray([[1],[1]]),\ N.asarray([[1,1],[1,1]]),N.asarray([[0,1,0],[1,1,1],[0,1,0]]),\ N.asarray([[1,1,1],[1,1,1]]),N.asarray([[1,1],[1,1],[1,1]]),\ N.asarray([[1,1,1],[1,1,1],[1,1,1]]),\ N.asarray([[1,1,1,1],[1,1,1,1],[1,1,1,1]]),\ N.asarray([[1,1,1],[1,1,1],[1,1,1],[1,1,1]]),\ N.asarray([[0,0,1,0,0],[0,1,1,1,0],[1,1,1,1,1],[0,1,1,1,0],[0,0,1,0,0]]),\ N.asarray([[1,1,1,1],[1,1,1,1]]),N.asarray([[1,1],[1,1],[1,1],[1,1]])] #------------------------------------------------ #---------- generation parameters self.regenerate_parameters(complexity) #------------------------------------------------ def _get_current_parameters(self): return [self.thick_param] def get_settings_names(self): return ['thick_param'] def regenerate_parameters(self, complexity): self.erodenb = N.ceil(complexity * self.__erodemax__) self.dilatenb = N.ceil(complexity * self.__dilatemax__) self.Perode = self.erodenb / (self.dilatenb + self.erodenb + 1.0) self.Pdilate = self.dilatenb / (self.dilatenb + self.erodenb + 1.0) assert (self.Perode + self.Pdilate <= 1) & (self.Perode + self.Pdilate >= 0) assert (complexity >= 0) & (complexity <= 1) P = N.random.uniform() if P>1-(self.Pdilate+self.Perode): if P>1-(self.Pdilate+self.Perode)+self.Perode: self.meth = 1 self.nb=N.random.randint(self.dilatenb) else: self.meth = -1 self.nb=N.random.randint(self.erodenb) else: self.meth = 0 self.nb = -1 self.thick_param = self.meth*self.nb return self._get_current_parameters() def transform_1_image(self,image): #the real transformation method if self.meth!=0: maxi = float(N.max(image)) mini = float(N.min(image)) imagenorm=image/maxi if self.meth==1: trans=scipy.ndimage.morphology.grey_dilation\ (imagenorm,size=self.__structuring_elements__[self.nb].shape,structure=self.__structuring_elements__[self.nb]) else: trans=scipy.ndimage.morphology.grey_erosion\ (imagenorm,size=self.__structuring_elements__[self.nb].shape,structure=self.__structuring_elements__[self.nb]) #------renormalizing maxit = N.max(trans) minit = N.min(trans) trans= N.asarray((trans - (minit+mini)) / (maxit - (minit+mini)) * maxi,dtype=image.dtype) #-------- return trans else: return image def transform_image(self,image): #handling different format if image.shape == (self.__nx__,self.__ny__): return self.transform_1_image(image) if image.ndim == 3: newimage = copy.copy(image) for i in range(image.shape[0]): newimage[i,:,:] = self.transform_1_image(image[i,:,:]) return newimage if image.ndim == 2 and image.shape != (self.__nx__,self.__ny__): newimage = N.reshape(image,(image.shape[0],self.__nx__,self.__ny__)) for i in range(image.shape[0]): newimage[i,:,:] = self.transform_1_image(newimage[i,:,:]) return N.reshape(newimage,image.shape) if image.ndim == 1: newimage = N.reshape(image,(self.__nx__,self.__ny__)) newimage = self.transform_1_image(newimage) return N.reshape(newimage,image.shape) assert False #should never go there #test on NIST (you need pylearn and access to NIST to do that) if __name__ == '__main__': from pylearn.io import filetensor as ft import copy import pygame import time datapath = '/data/lisa/data/nist/by_class/' f = open(datapath+'digits/digits_train_data.ft') d = ft.read(f) pygame.surfarray.use_arraytype('numpy') pygame.display.init() screen = pygame.display.set_mode((8*4*32,8*32),0,8) anglcolorpalette=[(x,x,x) for x in xrange(0,256)] screen.set_palette(anglcolorpalette) MyThick = Thick() #debut=time.time() #MyThick.transform_image(d) #fin=time.time() #print '------------------------------------------------' #print d.shape[0],' images transformed in :', fin-debut, ' seconds' #print '------------------------------------------------' #print (fin-debut)/d.shape[0]*1000000,' microseconds per image' #print '------------------------------------------------' #print MyThick.get_settings_names() #print MyThick._get_current_parameters() #print MyThick.regenerate_parameters(0) #print MyThick.regenerate_parameters(0.5) #print MyThick.regenerate_parameters(1) for i in range(10000): a=d[i,:] b=N.asarray(N.reshape(a,(32,32))).T new=pygame.surfarray.make_surface(b) new=pygame.transform.scale2x(new) new=pygame.transform.scale2x(new) new=pygame.transform.scale2x(new) new.set_palette(anglcolorpalette) screen.blit(new,(0,0)) #max dilation MyThick.meth=1 MyThick.nb=MyThick.__dilatemax__ c=MyThick.transform_image(a) b=N.asarray(N.reshape(c,(32,32))).T new=pygame.surfarray.make_surface(b) new=pygame.transform.scale2x(new) new=pygame.transform.scale2x(new) new=pygame.transform.scale2x(new) new.set_palette(anglcolorpalette) screen.blit(new,(8*32,0)) #max erosion MyThick.meth=-1 MyThick.nb=MyThick.__erodemax__ c=MyThick.transform_image(a) b=N.asarray(N.reshape(c,(32,32))).T new=pygame.surfarray.make_surface(b) new=pygame.transform.scale2x(new) new=pygame.transform.scale2x(new) new=pygame.transform.scale2x(new) new.set_palette(anglcolorpalette) screen.blit(new,(8*2*32,0)) #random print MyThick.get_settings_names(), MyThick.regenerate_parameters(1) c=MyThick.transform_image(a) b=N.asarray(N.reshape(c,(32,32))).T new=pygame.surfarray.make_surface(b) new=pygame.transform.scale2x(new) new=pygame.transform.scale2x(new) new=pygame.transform.scale2x(new) new.set_palette(anglcolorpalette) screen.blit(new,(8*3*32,0)) pygame.display.update() raw_input('Press Enter') pygame.display.quit()