Mercurial > ift6266
view transformations/BruitGauss.py @ 106:313c249d638e
Correction bug division par zéro dans BruitGauss.py
author | boulanni <nicolas_boulanger@hotmail.com> |
---|---|
date | Mon, 15 Feb 2010 15:22:08 -0500 |
parents | 939915371a6d |
children | 259439a4f9e7 |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 ''' Ajout de bruit gaussien dans les donnees. A chaque iteration, un bruit poivre et sel est ajoute, puis un lissage gaussien autour de ce point est ajoute. On fait un nombre d'iteration = 1024*complexity/25 ce qui equivaud a complexity/25 des points qui recoivent le centre du noyau gaussien. Il y en a beaucoup moins que le bruit poivre et sel, car la transformation est plutôt aggressive et touche beaucoup de pixels autour du centre La grandeur de la gaussienne ainsi que son ecart type sont definit par complexity et par une composante aleatoire normale. On a 25 % de chances d'effectuer le bruitage Ce fichier prend pour acquis que les images sont donnees une a la fois sous forme de numpy.array de 1024 (32 x 32) valeurs entre 0 et 1. Sylvain Pannetier Lebeuf dans le cadre de IFT6266, hiver 2010 ''' import numpy import random import scipy from scipy import ndimage class BruitGauss(): def __init__(self,complexity=1): self.nb_chngmax =10 #Le nombre de pixels changes. Seulement pour fin de calcul self.grandeurmax = 20 self.sigmamax = 6.0 self.regenerate_parameters(complexity) def get_settings_names(self): return ['nb_chng','sigma_gauss','grandeur','effectuer'] def regenerate_parameters(self, complexity): self.nb_chng=3+int(numpy.random.rand()*self.nb_chngmax*complexity) if float(complexity) > 0: self.sigma_gauss=2.0 + numpy.random.rand()*self.sigmamax*complexity self.grandeur=12+int(numpy.random.rand()*self.grandeurmax*complexity) self.effectuer =numpy.random.binomial(1,0.25) ##### On a 25% de faire un bruit ##### else: self.effectuer = 0 self.sigma_gauss = 1 # eviter division par 0 self.grandeur=1 #Un peu de paranoia ici, mais on ne sait jamais #creation du noyau gaussien self.gauss=numpy.zeros((self.grandeur,self.grandeur)) x0 = y0 = self.grandeur/2.0 for i in xrange(self.grandeur): for j in xrange(self.grandeur): self.gauss[i,j]=numpy.exp(-((i-x0)**2 + (j-y0)**2) / self.sigma_gauss**2) #creation de la fenetre de moyennage self.moy=numpy.zeros((self.grandeur,self.grandeur)) x0 = y0 = self.grandeur/2 for i in xrange(0,self.grandeur): for j in xrange(0,self.grandeur): self.moy[i,j]=((numpy.sqrt(2*(self.grandeur/2.0)**2) - numpy.sqrt(numpy.abs(i-self.grandeur/2.0)**2+numpy.abs(j-self.grandeur/2.0)**2))/\ numpy.sqrt((self.grandeur/2.0)**2))**5 return self._get_current_parameters() def _get_current_parameters(self): return [self.nb_chng,self.sigma_gauss,self.grandeur,self.effectuer] def transform_image(self, image): if self.effectuer == 0: return image image=image.reshape((32,32)) filtered_image = ndimage.convolve(image,self.gauss,mode='constant') assert image.shape == filtered_image.shape filtered_image = (filtered_image - filtered_image.min() + image.min()) / (filtered_image.max() - filtered_image.min() + image.min()) * image.max() #construction of the moyennage Mask Mask = numpy.zeros((32,32)) for i in xrange(0,self.nb_chng): x_bruit=int(numpy.random.randint(0,32)) y_bruit=int(numpy.random.randint(0,32)) offsetxmin = 0 offsetxmax = 0 offsetymin = 0 offsetymax = 0 if x_bruit < self.grandeur / 2: offsetxmin = self.grandeur / 2 - x_bruit if 32-x_bruit < numpy.ceil(self.grandeur / 2.0): offsetxmax = numpy.ceil(self.grandeur / 2.0) - (32-x_bruit) if y_bruit < self.grandeur / 2: offsetymin = self.grandeur / 2 - y_bruit if 32-y_bruit < numpy.ceil(self.grandeur / 2.0): offsetymax = numpy.ceil(self.grandeur / 2.0) - (32-y_bruit) Mask[x_bruit - self.grandeur/2 + offsetxmin : x_bruit + numpy.ceil(self.grandeur/2.0) - offsetxmax,\ y_bruit - self.grandeur/2 + offsetymin : y_bruit + numpy.ceil(self.grandeur/2.0)- offsetymax] +=\ self.moy[offsetxmin:self.grandeur - offsetxmax,offsetymin:self.grandeur - offsetymax] return numpy.asarray((image + filtered_image*Mask)/(Mask+1),dtype='float32') #---TESTS--- def _load_image(): f = open('/home/sylvain/Dropbox/Msc/IFT6266/donnees/lower_test_data.ft') #Le jeu de donnees est en local. d = ft.read(f) w=numpy.asarray(d[0]) return (w/255.0).astype('float') def _test(complexite): img=_load_image() transfo = BruitGauss() pylab.imshow(img.reshape((32,32))) pylab.show() print transfo.get_settings_names() print transfo.regenerate_parameters(complexite) img_trans=transfo.transform_image(img) pylab.imshow(img_trans.reshape((32,32))) pylab.show() if __name__ == '__main__': from pylearn.io import filetensor as ft import pylab _test(0.5)