Mercurial > ift6266
view scripts/setup_batches.py @ 283:28b628f331b2
correction d'un bug sur l'indice des mini-batches
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Wed, 24 Mar 2010 14:58:58 -0400 |
parents | f6d9b6b89c2a |
children | a6b6b1140de9 |
line wrap: on
line source
# -*- coding: utf-8 -*- import random from pylearn.io import filetensor as ft class Batches(): def __init__(self): data_path = '/data/lisa/data/nist/by_class/' digits_train_data = 'digits/digits_train_data.ft' digits_train_labels = 'digits/digits_train_labels.ft' digits_test_data = 'digits/digits_test_data.ft' digits_test_labels = 'digits/digits_test_labels.ft' lower_train_data = 'lower/lower_train_data.ft' lower_train_labels = 'lower/lower_train_labels.ft' #upper_train_data = 'upper/upper_train_data.ft' #upper_train_labels = 'upper/upper_train_labels.ft' f_digits_train_data = open(data_path + digits_train_data) f_digits_train_labels = open(data_path + digits_train_labels) f_digits_test_data = open(data_path + digits_test_data) f_digits_test_labels = open(data_path + digits_test_labels) f_lower_train_data = open(data_path + lower_train_data) f_lower_train_labels = open(data_path + lower_train_labels) #f_upper_train_data = open(data_path + upper_train_data) #f_upper_train_labels = open(data_path + upper_train_labels) self.raw_digits_train_data = ft.read(f_digits_train_data) self.raw_digits_train_labels = ft.read(f_digits_train_labels) self.raw_digits_test_data = ft.read(f_digits_test_data) self.raw_digits_test_labels = ft.read(f_digits_test_labels) self.raw_lower_train_data = ft.read(f_lower_train_data) self.raw_lower_train_labels = ft.read(f_lower_train_labels) #self.raw_upper_train_data = ft.read(f_upper_train_data) #self.raw_upper_train_labels = ft.read(f_upper_train_labels) f_digits_train_data.close() f_digits_train_labels.close() f_digits_test_data.close() f_digits_test_labels.close() f_lower_train_data.close() f_lower_train_labels.close() #f_upper_train_data.close() #f_upper_train_labels.close() def set_batches(self, start_ratio = -1, end_ratio = -1, batch_size = 20, verbose = False): self.batch_size = batch_size digits_train_size = len(self.raw_digits_train_labels) digits_test_size = len(self.raw_digits_test_labels) lower_train_size = len(self.raw_lower_train_labels) #upper_train_size = len(self.raw_upper_train_labels) if verbose == True: print 'digits_train_size = %d' %digits_train_size print 'digits_test_size = %d' %digits_test_size print 'lower_train_size = %d' %lower_train_size #print 'upper_train_size = %d' %upper_train_size # define main and other datasets raw_main_train_data = self.raw_digits_train_data raw_other_train_data = self.raw_lower_train_labels raw_test_data = self.raw_digits_test_labels raw_main_train_labels = self.raw_digits_train_labels raw_other_train_labels = self.raw_lower_train_labels raw_test_labels = self.raw_digits_test_labels main_train_size = len(raw_main_train_data) other_train_size = len(raw_other_train_data) test_size = len(raw_test_data) test_size = int(test_size/batch_size) test_size *= batch_size validation_size = test_size # default ratio is actual ratio if start_ratio == -1: self.start_ratio = float(main_train_size) / float(main_train_size + other_train_size) else: self.start_ratio = start_ratio if start_ratio == -1: self.end_ratio = float(main_train_size) / float(main_train_size + other_train_size) else: self.end_ratio = end_ratio if verbose == True: print 'start_ratio = %f' %self.start_ratio print 'end_ratio = %f' %self.end_ratio i_main = 0 i_other = 0 i_batch = 0 # compute the number of batches given start and end ratios n_main_batch = (main_train_size - batch_size * (self.end_ratio - self.start_ratio) / 2 ) / (batch_size * (self.start_ratio + (self.end_ratio - self.start_ratio) / 2)) n_other_batch = (other_train_size - batch_size * (self.end_ratio - self.start_ratio) / 2 ) / (batch_size - batch_size * (self.start_ratio + (self.end_ratio - self.start_ratio) / 2)) n_batches = min([n_main_batch, n_other_batch]) # train batches self.train_batches = [] # as long as we have data left in main and other, we create batches while i_main < main_train_size - batch_size - test_size and i_other < other_train_size - batch_size: ratio = self.start_ratio + i_batch * (self.end_ratio - self.start_ratio) / n_batches batch_data = [] batch_labels = [] for i in xrange(0, self.batch_size): # randomly choose between main and other, given the current ratio rnd = random.randint(0, 100) if rnd < 100 * ratio: batch_data = batch_data + \ [raw_main_train_data[i_main]] batch_labels = batch_labels + \ [raw_main_train_labels[i_main]] i_main += 1 else: batch_data = batch_data + \ [raw_other_train_data[i_other]] batch_labels = batch_labels + \ [raw_other_train_labels[i_other]] i_other += 1 self.train_batches = self.train_batches + \ [(batch_data,batch_labels)] i_batch += 1 offset = i_main if verbose == True: print 'n_main = %d' %i_main print 'n_other = %d' %i_other print 'nb_train_batches = %d / %d' %(i_batch,n_batches) print 'offset = %d' %offset # test batches self.test_batches = [] for i in xrange(0, test_size, batch_size): self.test_batches = self.test_batches + \ [(raw_test_data[i:i+batch_size], raw_test_labels[i:i+batch_size])] # validation batches self.validation_batches = [] for i in xrange(0, test_size, batch_size): self.validation_batches = self.validation_batches + \ [(raw_main_train_data[offset+i:offset+i+batch_size], raw_main_train_labels[offset+i:offset+i+batch_size])] def get_train_batches(self): return self.train_batches def get_test_batches(self): return self.test_batches def get_validation_batches(self): return self.validation_batches def test_set_batches(self, intervall = 1000): for i in xrange(0, len(self.train_batches) - self.batch_size, intervall): n_main = 0 for j in xrange(0, self.batch_size): if self.train_batches[i][1][j] < 10: n_main +=1 print 'ratio batch %d : %f' %(i,float(n_main) / float(self.batch_size)) if __name__ == '__main__': batches = Batches() batches.set_batches(0.5,1, 20, True) batches.test_set_batches()