Mercurial > ift6266
view scripts/stacked_dae/nist_sda.py @ 132:25b7c1f20949
Adapted pycaptcha to get fonts in /Tmp/allfonts local folder
author | boulanni <nicolas_boulanger@hotmail.com> |
---|---|
date | Sat, 20 Feb 2010 02:06:38 -0500 |
parents | 5c79a2557f2f |
children | 7d8366fb90bf |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 import numpy import theano import time import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams import os.path from sgd_optimization import sgd_optimization from jobman import DD from pylearn.io import filetensor from utils import produit_croise_jobs NIST_ALL_LOCATION = '/data/lisa/data/nist/by_class/all' # Just useful for tests... minimal number of epochs DEFAULT_HP_NIST = DD({'finetuning_lr':0.1, 'pretraining_lr':0.1, 'pretraining_epochs_per_layer':1, 'max_finetuning_epochs':1, 'hidden_layers_sizes':[1000,1000], 'corruption_levels':[0.2,0.2], 'minibatch_size':20}) def jobman_entrypoint_nist(state, channel): sgd_optimization_nist(state) def jobman_insert_nist(): vals = {'finetuning_lr': [0.00001, 0.0001, 0.001, 0.01, 0.1], 'pretraining_lr': [0.00001, 0.0001, 0.001, 0.01, 0.1], 'pretraining_epochs_per_layer': [2,5,20], 'hidden_layer_sizes': [100,300,1000], 'num_hidden_layers':[1,2,3], 'corruption_levels': [0.1,0.2,0.4], 'minibatch_size': [5,20,100]} jobs = produit_croise_jobs(vals) for job in jobs: insert_job(job) class NIST: def __init__(self, minibatch_size, basepath=None): global NIST_ALL_LOCATION self.minibatch_size = minibatch_size self.basepath = basepath and basepath or NIST_ALL_LOCATION self.set_filenames() # arrays of 2 elements: .x, .y self.train = [None, None] self.test = [None, None] self.load_train_test() self.valid = [[], []] #self.split_train_valid() def get_tvt(self): return self.train, self.valid, self.test def set_filenames(self): self.train_files = ['all_train_data.ft', 'all_train_labels.ft'] self.test_files = ['all_test_data.ft', 'all_test_labels.ft'] def load_train_test(self): self.load_data_labels(self.train_files, self.train) self.load_data_labels(self.test_files, self.test) def load_data_labels(self, filenames, pair): for i, fn in enumerate(filenames): f = open(os.path.join(self.basepath, fn)) pair[i] = filetensor.read(f) f.close() def split_train_valid(self): test_len = len(self.test[0]) new_train_x = self.train[0][:-test_len] new_train_y = self.train[1][:-test_len] self.valid[0] = self.train[0][-test_len:] self.valid[1] = self.train[1][-test_len:] self.train[0] = new_train_x self.train[1] = new_train_y def test_load_nist(): print "Will load NIST" import time t1 = time.time() nist = NIST(20) t2 = time.time() print "NIST loaded. time delta = ", t2-t1 tr,v,te = nist.get_tvt() print "Lenghts: ", len(tr[0]), len(v[0]), len(te[0]) raw_input("Press any key") # hp for hyperparameters def sgd_optimization_nist(hp=None, dataset_dir='/data/lisa/data/nist'): global DEFAULT_HP_NIST hp = hp and hp or DEFAULT_HP_NIST print "Will load NIST" import time t1 = time.time() nist = NIST(20) t2 = time.time() print "NIST loaded. time delta = ", t2-t1 train,valid,test = nist.get_tvt() dataset = (train,valid,test) print "Lenghts train, valid, test: ", len(train[0]), len(valid[0]), len(test[0]) n_ins = 32*32 n_outs = 62 # 10 digits, 26*2 (lower, capitals) sgd_optimization(dataset, hp, n_ins, n_outs) if __name__ == '__main__': import sys args = sys.argv[1:] if len(args) > 0 and args[0] == 'load_nist': test_load_nist() else: sgd_optimization_nist()