Mercurial > ift6266
view deep/stacked_dae/v_guillaume/train_error.py @ 643:24d9819a810f
reviews aistats finales
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Thu, 24 Mar 2011 17:04:38 -0400 |
parents | 0ca069550abd |
children |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 import ift6266 import pylearn import numpy import theano import time import pylearn.version import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams import copy import sys import os import os.path from jobman import DD import jobman, jobman.sql from pylearn.io import filetensor from utils import produit_cartesien_jobs from copy import copy from sgd_optimization import SdaSgdOptimizer #from ift6266.utils.scalar_series import * from ift6266.utils.seriestables import * import tables from ift6266 import datasets from config import * ''' Function called by jobman upon launching each job Its path is the one given when inserting jobs: see EXPERIMENT_PATH ''' def jobman_entrypoint(state, channel): # record mercurial versions of each package pylearn.version.record_versions(state,[theano,ift6266,pylearn]) # TODO: remove this, bad for number of simultaneous requests on DB channel.save() # For test runs, we don't want to use the whole dataset so # reduce it to fewer elements if asked to. rtt = None if state.has_key('reduce_train_to'): rtt = state['reduce_train_to'] elif REDUCE_TRAIN_TO: rtt = REDUCE_TRAIN_TO n_ins = 32*32 n_outs = 62 # 10 digits, 26*2 (lower, capitals) examples_per_epoch = NIST_ALL_TRAIN_SIZE PATH = '' maximum_exemples=int(500000) #Maximum number of exemples seen print "Creating optimizer with state, ", state optimizer = SdaSgdOptimizer(dataset=datasets.nist_all(), hyperparameters=state, \ n_ins=n_ins, n_outs=n_outs,\ examples_per_epoch=examples_per_epoch, \ max_minibatches=rtt) if os.path.exists(PATH+'params_finetune_NIST.txt'): print ('\n finetune = NIST ') optimizer.reload_parameters(PATH+'params_finetune_NIST.txt') print "For" + str(maximum_exemples) + "over the NIST training set: " optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples)) if os.path.exists(PATH+'params_finetune_P07.txt'): print ('\n finetune = P07 ') optimizer.reload_parameters(PATH+'params_finetune_P07.txt') print "For" + str(maximum_exemples) + "over the P07 training set: " optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples)) if os.path.exists(PATH+'params_finetune_NIST_then_P07.txt'): print ('\n finetune = NIST then P07') optimizer.reload_parameters(PATH+'params_finetune_NIST_then_P07.txt') print "For" + str(maximum_exemples) + "over the NIST training set: " optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples)) print "For" + str(maximum_exemples) + "over the P07 training set: " optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples)) if os.path.exists(PATH+'params_finetune_P07_then_NIST.txt'): print ('\n finetune = P07 then NIST') optimizer.reload_parameters(PATH+'params_finetune_P07_then_NIST.txt') print "For" + str(maximum_exemples) + "over the P07 training set: " optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples)) print "For" + str(maximum_exemples) + "over the NIST training set: " optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples)) channel.save() return channel.COMPLETE if __name__ == '__main__': chanmock = DD({'COMPLETE':0,'save':(lambda:None)}) jobman_entrypoint(DD(DEFAULT_HP_NIST), chanmock)