Mercurial > ift6266
view data_generation/pipeline/visualize_filtered.py @ 646:220f5ab44457
adding license
author | Razvan Pascanu <r.pascanu@gmail.com> |
---|---|
date | Wed, 17 Oct 2012 09:16:32 -0400 |
parents | 75dbbe409578 |
children |
line wrap: on
line source
import numpy import pylab from pylearn.io import filetensor as ft from ift6266 import datasets from ift6266.datasets.ftfile import FTDataSet import time import matplotlib.cm as cm dataset_str = 'P07safe_' #'PNIST07_' # NISTP base_path = '/data/lisatmp/ift6266h10/data/'+dataset_str base_output_path = '/data/lisatmp/ift6266h10/data/transformed_digits/'+dataset_str+'train' fileno = 15 output_data_file = base_output_path+str(fileno)+'_data.ft' output_labels_file = base_output_path+str(fileno)+'_labels.ft' dataset_obj = lambda maxsize=None, min_file=0, max_file=100: \ FTDataSet(train_data = [output_data_file], train_lbl = [output_labels_file], test_data = [base_path+'_test_data.ft'], test_lbl = [base_path+'_test_labels.ft'], valid_data = [base_path+'_valid_data.ft'], valid_lbl = [base_path+'_valid_labels.ft']) # no conversion or scaling... keep data as is #indtype=theano.config.floatX, inscale=255., maxsize=maxsize) dataset = dataset_obj() train_ds = dataset.train(1) for i in range(2983): if i < 2900: continue ex = train_ds.next() pylab.ion() pylab.clf() pylab.imshow(ex[0].reshape(32,32),cmap=cm.gray) pylab.draw() time.sleep(0.5)