Mercurial > ift6266
view data_generation/transformations/image_tiling.py @ 167:1f5937e9e530
More moves - transformations into data_generation, added "deep" folder
author | Dumitru Erhan <dumitru.erhan@gmail.com> |
---|---|
date | Fri, 26 Feb 2010 14:15:38 -0500 |
parents | transformations/image_tiling.py@8ce089f30463 |
children |
line wrap: on
line source
""" Illustrate filters (or data) in a grid of small image-shaped tiles. Note: taken from the pylearn codebase on Feb 4, 2010 (fsavard) """ import numpy from PIL import Image def scale_to_unit_interval(ndar,eps=1e-8): ndar = ndar.copy() ndar -= ndar.min() ndar *= 1.0 / (ndar.max()+eps) return ndar def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0,0), scale_rows_to_unit_interval=True, output_pixel_vals=True ): """ Transform an array with one flattened image per row, into an array in which images are reshaped and layed out like tiles on a floor. This function is useful for visualizing datasets whose rows are images, and also columns of matrices for transforming those rows (such as the first layer of a neural net). :type X: a 2-D ndarray or a tuple of 4 channels, elements of which can be 2-D ndarrays or None :param X: a 2-D array in which every row is a flattened image. :type img_shape: tuple; (height, width) :param img_shape: the original shape of each image :type tile_shape: tuple; (rows, cols) :param tile_shape: the number of images to tile (rows, cols) :returns: array suitable for viewing as an image. (See:`PIL.Image.fromarray`.) :rtype: a 2-d array with same dtype as X. """ assert len(img_shape) == 2 assert len(tile_shape) == 2 assert len(tile_spacing) == 2 out_shape = [(ishp + tsp) * tshp - tsp for ishp, tshp, tsp in zip(img_shape, tile_shape, tile_spacing)] if isinstance(X, tuple): assert len(X) == 4 if output_pixel_vals: out_array = numpy.zeros((out_shape[0], out_shape[1], 4), dtype='uint8') else: out_array = numpy.zeros((out_shape[0], out_shape[1], 4), dtype=X.dtype) #colors default to 0, alpha defaults to 1 (opaque) if output_pixel_vals: channel_defaults = [0,0,0,255] else: channel_defaults = [0.,0.,0.,1.] for i in xrange(4): if X[i] is None: out_array[:,:,i] = numpy.zeros(out_shape, dtype='uint8' if output_pixel_vals else out_array.dtype )+channel_defaults[i] else: out_array[:,:,i] = tile_raster_images(X[i], img_shape, tile_shape, tile_spacing, scale_rows_to_unit_interval, output_pixel_vals) return out_array else: H, W = img_shape Hs, Ws = tile_spacing out_array = numpy.zeros(out_shape, dtype='uint8' if output_pixel_vals else X.dtype) for tile_row in xrange(tile_shape[0]): for tile_col in xrange(tile_shape[1]): if tile_row * tile_shape[1] + tile_col < X.shape[0]: if scale_rows_to_unit_interval: this_img = scale_to_unit_interval(X[tile_row * tile_shape[1] + tile_col].reshape(img_shape)) else: this_img = X[tile_row * tile_shape[1] + tile_col].reshape(img_shape) out_array[ tile_row * (H+Hs):tile_row*(H+Hs)+H, tile_col * (W+Ws):tile_col*(W+Ws)+W ] \ = this_img * (255 if output_pixel_vals else 1) return out_array