view code_tutoriel/convolutional_mlp.py @ 266:1e4e60ddadb1

Merge. Ah, et dans le dernier commit, j'avais oublié de mentionner que j'ai ajouté du code pour gérer l'isolation de différents clones pour rouler des expériences et modifier le code en même temps.
author fsavard
date Fri, 19 Mar 2010 10:56:16 -0400
parents 4bc5eeec6394
children
line wrap: on
line source

"""
This tutorial introduces the LeNet5 neural network architecture using Theano.  LeNet5 is a
convolutional neural network, good for classifying images. This tutorial shows how to build the
architecture, and comes with all the hyper-parameters you need to reproduce the paper's MNIST
results.


This implementation simplifies the model in the following ways:

 - LeNetConvPool doesn't implement location-specific gain and bias parameters
 - LeNetConvPool doesn't implement pooling by average, it implements pooling by max.
 - Digit classification is implemented with a logistic regression rather than an RBF network
 - LeNet5 was not fully-connected convolutions at second layer

References:
 - Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document
   Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998.
   http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
"""

import numpy, time, cPickle, gzip

import theano
import theano.tensor as T
from theano.tensor.signal import downsample
from theano.tensor.nnet import conv

from logistic_sgd import LogisticRegression, load_data
from mlp import HiddenLayer


class LeNetConvPoolLayer(object):
    """Pool Layer of a convolutional network """

    def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2,2)):
        """
        Allocate a LeNetConvPoolLayer with shared variable internal parameters.

        :type rng: numpy.random.RandomState
        :param rng: a random number generator used to initialize weights

        :type input: theano.tensor.dtensor4
        :param input: symbolic image tensor, of shape image_shape

        :type filter_shape: tuple or list of length 4
        :param filter_shape: (number of filters, num input feature maps,
                              filter height,filter width)

        :type image_shape: tuple or list of length 4
        :param image_shape: (batch size, num input feature maps,
                             image height, image width)

        :type poolsize: tuple or list of length 2
        :param poolsize: the downsampling (pooling) factor (#rows,#cols)
        """

        assert image_shape[1]==filter_shape[1]
        self.input = input
  
        # initialize weights to temporary values until we know the shape of the output feature
        # maps
        W_values = numpy.zeros(filter_shape, dtype=theano.config.floatX)
        self.W = theano.shared(value = W_values)

        # the bias is a 1D tensor -- one bias per output feature map
        b_values = numpy.zeros((filter_shape[0],), dtype= theano.config.floatX)
        self.b = theano.shared(value= b_values)

        # convolve input feature maps with filters
        conv_out = conv.conv2d(input = input, filters = self.W, 
                filter_shape=filter_shape, image_shape=image_shape)

        # there are "num input feature maps * filter height * filter width" inputs
        # to each hidden unit
        fan_in = numpy.prod(filter_shape[1:])
        # each unit in the lower layer receives a gradient from:
        # "num output feature maps * filter height * filter width" / pooling size
        fan_out = filter_shape[0] * numpy.prod(filter_shape[2:]) / numpy.prod(poolsize)
        # replace weight values with random weights
        W_bound = numpy.sqrt(6./(fan_in + fan_out))
        self.W.value = numpy.asarray( 
                rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
                dtype = theano.config.floatX)
  
        # downsample each feature map individually, using maxpooling
        pooled_out = downsample.max_pool2D( input = conv_out, 
                                    ds = poolsize, ignore_border=True)

        # add the bias term. Since the bias is a vector (1D array), we first
        # reshape it to a tensor of shape (1,n_filters,1,1). Each bias will thus
        # be broadcasted across mini-batches and feature map width & height
        self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))

        # store parameters of this layer
        self.params = [self.W, self.b]



def evaluate_lenet5(learning_rate=0.1, n_epochs=200, dataset='mnist.pkl.gz', nkerns=[20,50]):
    """ Demonstrates lenet on MNIST dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
                          gradient) 

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: path to the dataset used for training /testing (MNIST here)

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer
    """

    rng = numpy.random.RandomState(23455)

    datasets = load_data(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x , test_set_y  = datasets[2]


    batch_size = 500    # size of the minibatch

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.value.shape[0] / batch_size
    n_valid_batches = valid_set_x.value.shape[0] / batch_size
    n_test_batches  = test_set_x.value.shape[0]  / batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()    # index to a [mini]batch 
    x     = T.matrix('x')  # the data is presented as rasterized images
    y     = T.ivector('y') # the labels are presented as 1D vector of 
                           # [int] labels


    ishape = (28,28)     # this is the size of MNIST images

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print '... building the model'

    # Reshape matrix of rasterized images of shape (batch_size,28*28)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size,1,28,28))

    # Construct the first convolutional pooling layer:
    # filtering reduces the image size to (28-5+1,28-5+1)=(24,24)
    # maxpooling reduces this further to (24/2,24/2) = (12,12)
    # 4D output tensor is thus of shape (batch_size,nkerns[0],12,12)
    layer0 = LeNetConvPoolLayer(rng, input=layer0_input,
            image_shape=(batch_size,1,28,28), 
            filter_shape=(nkerns[0],1,5,5), poolsize=(2,2))

    # Construct the second convolutional pooling layer
    # filtering reduces the image size to (12-5+1,12-5+1)=(8,8)
    # maxpooling reduces this further to (8/2,8/2) = (4,4)
    # 4D output tensor is thus of shape (nkerns[0],nkerns[1],4,4)
    layer1 = LeNetConvPoolLayer(rng, input=layer0.output,
            image_shape=(batch_size,nkerns[0],12,12), 
            filter_shape=(nkerns[1],nkerns[0],5,5), poolsize=(2,2))

    # the TanhLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size,num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (20,32*4*4) = (20,512)
    layer2_input = layer1.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(rng, input=layer2_input, n_in=nkerns[1]*4*4, 
                         n_out=500, activation = T.tanh)

    # classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10)

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function([index], layer3.errors(y),
             givens = {
                x: test_set_x[index*batch_size:(index+1)*batch_size],
                y: test_set_y[index*batch_size:(index+1)*batch_size]})

    validate_model = theano.function([index], layer3.errors(y),
            givens = {
                x: valid_set_x[index*batch_size:(index+1)*batch_size],
                y: valid_set_y[index*batch_size:(index+1)*batch_size]})

    # create a list of all model parameters to be fit by gradient descent
    params = layer3.params+ layer2.params+ layer1.params + layer0.params
    
    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by SGD
    # Since this model has many parameters, it would be tedious to manually
    # create an update rule for each model parameter. We thus create the updates
    # dictionary by automatically looping over all (params[i],grads[i])  pairs.
    updates = {}
    for param_i, grad_i in zip(params, grads):
        updates[param_i] = param_i - learning_rate * grad_i
    
    train_model = theano.function([index], cost, updates=updates,
          givens = {
            x: train_set_x[index*batch_size:(index+1)*batch_size],
            y: train_set_y[index*batch_size:(index+1)*batch_size]})


    ###############
    # TRAIN MODEL #
    ###############
    print '... training'
    # early-stopping parameters
    patience              = 10000 # look as this many examples regardless
    patience_increase     = 2     # wait this much longer when a new best is 
                                  # found
    improvement_threshold = 0.995 # a relative improvement of this much is 
                                  # considered significant
    validation_frequency  = min(n_train_batches, patience/2)
                                  # go through this many 
                                  # minibatche before checking the network 
                                  # on the validation set; in this case we 
                                  # check every epoch 

    best_params          = None
    best_validation_loss = float('inf')
    best_iter            = 0
    test_score           = 0.
    start_time = time.clock()

    epoch = 0 
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
      epoch = epoch + 1
      for minibatch_index in xrange(n_train_batches):
        
        iter = epoch * n_train_batches + minibatch_index

        if iter %100 == 0:
            print 'training @ iter = ', iter
        cost_ij = train_model(minibatch_index)

        if (iter+1) % validation_frequency == 0: 

            # compute zero-one loss on validation set
            validation_losses = [validate_model(i) for i in xrange(n_valid_batches)]
            this_validation_loss = numpy.mean(validation_losses)
            print('epoch %i, minibatch %i/%i, validation error %f %%' % \
                   (epoch, minibatch_index+1, n_train_batches, \
                    this_validation_loss*100.))


            # if we got the best validation score until now
            if this_validation_loss < best_validation_loss:

                #improve patience if loss improvement is good enough
                if this_validation_loss < best_validation_loss *  \
                       improvement_threshold :
                    patience = max(patience, iter * patience_increase)

                # save best validation score and iteration number
                best_validation_loss = this_validation_loss
                best_iter = iter

                # test it on the test set
                test_losses = [test_model(i) for i in xrange(n_test_batches)]
                test_score = numpy.mean(test_losses)
                print(('     epoch %i, minibatch %i/%i, test error of best '
                      'model %f %%') % 
                             (epoch, minibatch_index+1, n_train_batches,
                              test_score*100.))

        if patience <= iter :
            done_looping = False
            break

    end_time = time.clock()
    print('Optimization complete.')
    print('Best validation score of %f %% obtained at iteration %i,'\
          'with test performance %f %%' %  
          (best_validation_loss * 100., best_iter, test_score*100.))
    print('The code ran for %f minutes' % ((end_time-start_time)/60.))

if __name__ == '__main__':
    evaluate_lenet5()

def experiment(state, channel):
    evaluate_lenet5(state.learning_rate, dataset=state.dataset)