Mercurial > ift6266
view baseline/conv_mlp/convolutional_mlp.py @ 266:1e4e60ddadb1
Merge. Ah, et dans le dernier commit, j'avais oublié de mentionner que j'ai ajouté du code pour gérer l'isolation de différents clones pour rouler des expériences et modifier le code en même temps.
author | fsavard |
---|---|
date | Fri, 19 Mar 2010 10:56:16 -0400 |
parents | a491d3600a77 |
children | d41fe003fade |
line wrap: on
line source
""" This tutorial introduces the LeNet5 neural network architecture using Theano. LeNet5 is a convolutional neural network, good for classifying images. This tutorial shows how to build the architecture, and comes with all the hyper-parameters you need to reproduce the paper's MNIST results. The best results are obtained after X iterations of the main program loop, which takes *** minutes on my workstation (an Intel Core i7, circa July 2009), and *** minutes on my GPU (an NVIDIA GTX 285 graphics processor). This implementation simplifies the model in the following ways: - LeNetConvPool doesn't implement location-specific gain and bias parameters - LeNetConvPool doesn't implement pooling by average, it implements pooling by max. - Digit classification is implemented with a logistic regression rather than an RBF network - LeNet5 was not fully-connected convolutions at second layer References: - Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998. http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf """ import numpy, theano, cPickle, gzip, time import theano.tensor as T import theano.sandbox.softsign import pylearn.datasets.MNIST from pylearn.io import filetensor as ft from theano.sandbox import conv, downsample import theano,pylearn.version,ift6266 class LeNetConvPoolLayer(object): def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2,2)): """ Allocate a LeNetConvPoolLayer with shared variable internal parameters. :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dtensor4 :param input: symbolic image tensor, of shape image_shape :type filter_shape: tuple or list of length 4 :param filter_shape: (number of filters, num input feature maps, filter height,filter width) :type image_shape: tuple or list of length 4 :param image_shape: (batch size, num input feature maps, image height, image width) :type poolsize: tuple or list of length 2 :param poolsize: the downsampling (pooling) factor (#rows,#cols) """ assert image_shape[1]==filter_shape[1] self.input = input # initialize weight values: the fan-in of each hidden neuron is # restricted by the size of the receptive fields. fan_in = numpy.prod(filter_shape[1:]) W_values = numpy.asarray( rng.uniform( \ low = -numpy.sqrt(3./fan_in), \ high = numpy.sqrt(3./fan_in), \ size = filter_shape), dtype = theano.config.floatX) self.W = theano.shared(value = W_values) # the bias is a 1D tensor -- one bias per output feature map b_values = numpy.zeros((filter_shape[0],), dtype= theano.config.floatX) self.b = theano.shared(value= b_values) # convolve input feature maps with filters conv_out = conv.conv2d(input, self.W, filter_shape=filter_shape, image_shape=image_shape) # downsample each feature map individually, using maxpooling pooled_out = downsample.max_pool2D(conv_out, poolsize, ignore_border=True) # add the bias term. Since the bias is a vector (1D array), we first # reshape it to a tensor of shape (1,n_filters,1,1). Each bias will thus # be broadcasted across mini-batches and feature map width & height self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) # store parameters of this layer self.params = [self.W, self.b] class SigmoidalLayer(object): def __init__(self, rng, input, n_in, n_out): """ Typical hidden layer of a MLP: units are fully-connected and have sigmoidal activation function. Weight matrix W is of shape (n_in,n_out) and the bias vector b is of shape (n_out,). Hidden unit activation is given by: sigmoid(dot(input,W) + b) :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dmatrix :param input: a symbolic tensor of shape (n_examples, n_in) :type n_in: int :param n_in: dimensionality of input :type n_out: int :param n_out: number of hidden units """ self.input = input W_values = numpy.asarray( rng.uniform( \ low = -numpy.sqrt(6./(n_in+n_out)), \ high = numpy.sqrt(6./(n_in+n_out)), \ size = (n_in, n_out)), dtype = theano.config.floatX) self.W = theano.shared(value = W_values) b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) self.b = theano.shared(value= b_values) self.output = T.tanh(T.dot(input, self.W) + self.b) self.params = [self.W, self.b] class LogisticRegression(object): """Multi-class Logistic Regression Class The logistic regression is fully described by a weight matrix :math:`W` and bias vector :math:`b`. Classification is done by projecting data points onto a set of hyperplanes, the distance to which is used to determine a class membership probability. """ def __init__(self, input, n_in, n_out): """ Initialize the parameters of the logistic regression :param input: symbolic variable that describes the input of the architecture (one minibatch) :type n_in: int :param n_in: number of input units, the dimension of the space in which the datapoints lie :type n_out: int :param n_out: number of output units, the dimension of the space in which the labels lie """ # initialize with 0 the weights W as a matrix of shape (n_in, n_out) self.W = theano.shared( value=numpy.zeros((n_in,n_out), dtype = theano.config.floatX) ) # initialize the baises b as a vector of n_out 0s self.b = theano.shared( value=numpy.zeros((n_out,), dtype = theano.config.floatX) ) # compute vector of class-membership probabilities in symbolic form self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) # compute prediction as class whose probability is maximal in # symbolic form self.y_pred=T.argmax(self.p_y_given_x, axis=1) # list of parameters for this layer self.params = [self.W, self.b] def negative_log_likelihood(self, y): """Return the mean of the negative log-likelihood of the prediction of this model under a given target distribution. :param y: corresponds to a vector that gives for each example the correct label Note: we use the mean instead of the sum so that the learning rate is less dependent on the batch size """ return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) def errors(self, y): """Return a float representing the number of errors in the minibatch over the total number of examples of the minibatch ; zero one loss over the size of the minibatch """ # check if y has same dimension of y_pred if y.ndim != self.y_pred.ndim: raise TypeError('y should have the same shape as self.y_pred', ('y', target.type, 'y_pred', self.y_pred.type)) # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError() def load_dataset(fname,batch=20): # repertoire qui contient les donnees NIST # le repertoire suivant va fonctionner si vous etes connecte sur un ordinateur # du reseau DIRO datapath = '/data/lisa/data/nist/by_class/' # le fichier .ft contient chiffres NIST dans un format efficace. Les chiffres # sont stockes dans une matrice de NxD, ou N est le nombre d'images, est D est # le nombre de pixels par image (32x32 = 1024). Chaque pixel de l'image est une # valeur entre 0 et 255, correspondant a un niveau de gris. Les valeurs sont # stockees comme des uint8, donc des bytes. f = open(datapath+'digits/digits_train_data.ft') # Verifier que vous avez assez de memoire pour loader les donnees au complet # dans le memoire. Sinon, utilisez ft.arraylike, une classe construite # specialement pour des fichiers qu'on ne souhaite pas loader dans RAM. d = ft.read(f) # NB: N'oubliez pas de diviser les valeurs des pixels par 255. si jamais vous # utilisez les donnees commes entrees dans un reseaux de neurones et que vous # voulez des entres entre 0 et 1. # digits_train_data.ft contient les images, digits_train_labels.ft contient les # etiquettes f = open(datapath+'digits/digits_train_labels.ft') labels = ft.read(f) # Load the dataset #f = gzip.open(fname,'rb') #train_set, valid_set, test_set = cPickle.load(f) #f.close() # make minibatches of size 20 batch_size = batch # sized of the minibatch # Dealing with the training set # get the list of training images (x) and their labels (y) (train_set_x, train_set_y) = (d[:200000,:],labels[:200000]) # initialize the list of training minibatches with empty list train_batches = [] for i in xrange(0, len(train_set_x), batch_size): # add to the list of minibatches the minibatch starting at # position i, ending at position i+batch_size # a minibatch is a pair ; the first element of the pair is a list # of datapoints, the second element is the list of corresponding # labels train_batches = train_batches + \ [(train_set_x[i:i+batch_size], train_set_y[i:i+batch_size])] #print train_batches[500] # Dealing with the validation set (valid_set_x, valid_set_y) = (d[200000:270000,:],labels[200000:270000]) # initialize the list of validation minibatches valid_batches = [] for i in xrange(0, len(valid_set_x), batch_size): valid_batches = valid_batches + \ [(valid_set_x[i:i+batch_size], valid_set_y[i:i+batch_size])] # Dealing with the testing set (test_set_x, test_set_y) = (d[270000:340000,:],labels[270000:340000]) # initialize the list of testing minibatches test_batches = [] for i in xrange(0, len(test_set_x), batch_size): test_batches = test_batches + \ [(test_set_x[i:i+batch_size], test_set_y[i:i+batch_size])] return train_batches, valid_batches, test_batches def evaluate_lenet5(learning_rate=0.1, n_iter=200, batch_size=20, n_kern0=20, n_kern1=50, n_layer=3, filter_shape0=5, filter_shape1=5, dataset='mnist.pkl.gz'): rng = numpy.random.RandomState(23455) print 'Before load dataset' train_batches, valid_batches, test_batches = load_dataset(dataset,batch_size) print 'After load dataset' ishape = (32,32) # this is the size of NIST images n_kern2=80 n_kern3=100 if n_layer==4: filter_shape1=3 filter_shape2=3 if n_layer==5: filter_shape0=4 filter_shape1=2 filter_shape2=2 filter_shape3=2 # allocate symbolic variables for the data x = T.matrix('x') # rasterized images y = T.lvector() # the labels are presented as 1D vector of [long int] labels ###################### # BUILD ACTUAL MODEL # ###################### # Reshape matrix of rasterized images of shape (batch_size,28*28) # to a 4D tensor, compatible with our LeNetConvPoolLayer layer0_input = x.reshape((batch_size,1,32,32)) # Construct the first convolutional pooling layer: # filtering reduces the image size to (32-5+1,32-5+1)=(28,28) # maxpooling reduces this further to (28/2,28/2) = (14,14) # 4D output tensor is thus of shape (20,20,14,14) layer0 = LeNetConvPoolLayer(rng, input=layer0_input, image_shape=(batch_size,1,32,32), filter_shape=(n_kern0,1,filter_shape0,filter_shape0), poolsize=(2,2)) if(n_layer>2): # Construct the second convolutional pooling layer # filtering reduces the image size to (14-5+1,14-5+1)=(10,10) # maxpooling reduces this further to (10/2,10/2) = (5,5) # 4D output tensor is thus of shape (20,50,5,5) fshape0=(32-filter_shape0+1)/2 layer1 = LeNetConvPoolLayer(rng, input=layer0.output, image_shape=(batch_size,n_kern0,fshape0,fshape0), filter_shape=(n_kern1,n_kern0,filter_shape1,filter_shape1), poolsize=(2,2)) else: fshape0=(32-filter_shape0+1)/2 layer1_input = layer0.output.flatten(2) # construct a fully-connected sigmoidal layer layer1 = SigmoidalLayer(rng, input=layer1_input,n_in=n_kern0*fshape0*fshape0, n_out=500) layer2 = LogisticRegression(input=layer1.output, n_in=500, n_out=10) cost = layer2.negative_log_likelihood(y) test_model = theano.function([x,y], layer2.errors(y)) params = layer2.params+ layer1.params + layer0.params if(n_layer>3): fshape0=(32-filter_shape0+1)/2 fshape1=(fshape0-filter_shape1+1)/2 layer2 = LeNetConvPoolLayer(rng, input=layer1.output, image_shape=(batch_size,n_kern1,fshape1,fshape1), filter_shape=(n_kern2,n_kern1,filter_shape2,filter_shape2), poolsize=(2,2)) if(n_layer>4): fshape0=(32-filter_shape0+1)/2 fshape1=(fshape0-filter_shape1+1)/2 fshape2=(fshape1-filter_shape2+1)/2 fshape3=(fshape2-filter_shape3+1)/2 layer3 = LeNetConvPoolLayer(rng, input=layer2.output, image_shape=(batch_size,n_kern2,fshape2,fshape2), filter_shape=(n_kern3,n_kern2,filter_shape3,filter_shape3), poolsize=(2,2)) layer4_input = layer3.output.flatten(2) layer4 = SigmoidalLayer(rng, input=layer4_input, n_in=n_kern3*fshape3*fshape3, n_out=500) layer5 = LogisticRegression(input=layer4.output, n_in=500, n_out=10) cost = layer5.negative_log_likelihood(y) test_model = theano.function([x,y], layer5.errors(y)) params = layer5.params+ layer4.params+ layer3.params+ layer2.params+ layer1.params + layer0.params elif(n_layer>3): fshape0=(32-filter_shape0+1)/2 fshape1=(fshape0-filter_shape1+1)/2 fshape2=(fshape1-filter_shape2+1)/2 layer3_input = layer2.output.flatten(2) layer3 = SigmoidalLayer(rng, input=layer3_input, n_in=n_kern2*fshape2*fshape2, n_out=500) layer4 = LogisticRegression(input=layer3.output, n_in=500, n_out=10) cost = layer4.negative_log_likelihood(y) test_model = theano.function([x,y], layer4.errors(y)) params = layer4.params+ layer3.params+ layer2.params+ layer1.params + layer0.params elif(n_layer>2): fshape0=(32-filter_shape0+1)/2 fshape1=(fshape0-filter_shape1+1)/2 # the SigmoidalLayer being fully-connected, it operates on 2D matrices of # shape (batch_size,num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (20,32*4*4) = (20,512) layer2_input = layer1.output.flatten(2) # construct a fully-connected sigmoidal layer layer2 = SigmoidalLayer(rng, input=layer2_input, n_in=n_kern1*fshape1*fshape1, n_out=500) # classify the values of the fully-connected sigmoidal layer layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10) # the cost we minimize during training is the NLL of the model cost = layer3.negative_log_likelihood(y) # create a function to compute the mistakes that are made by the model test_model = theano.function([x,y], layer3.errors(y)) # create a list of all model parameters to be fit by gradient descent params = layer3.params+ layer2.params+ layer1.params + layer0.params # create a list of gradients for all model parameters grads = T.grad(cost, params) # train_model is a function that updates the model parameters by SGD # Since this model has many parameters, it would be tedious to manually # create an update rule for each model parameter. We thus create the updates # dictionary by automatically looping over all (params[i],grads[i]) pairs. updates = {} for param_i, grad_i in zip(params, grads): updates[param_i] = param_i - learning_rate * grad_i train_model = theano.function([x, y], cost, updates=updates) ############### # TRAIN MODEL # ############### n_minibatches = len(train_batches) # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = n_minibatches # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = float('inf') best_iter = 0 test_score = 0. start_time = time.clock() # have a maximum of `n_iter` iterations through the entire dataset for iter in xrange(n_iter * n_minibatches): # get epoch and minibatch index epoch = iter / n_minibatches minibatch_index = iter % n_minibatches # get the minibatches corresponding to `iter` modulo # `len(train_batches)` x,y = train_batches[ minibatch_index ] if iter %100 == 0: print 'training @ iter = ', iter cost_ij = train_model(x,y) if (iter+1) % validation_frequency == 0: # compute zero-one loss on validation set this_validation_loss = 0. for x,y in valid_batches: # sum up the errors for each minibatch this_validation_loss += test_model(x,y) # get the average by dividing with the number of minibatches this_validation_loss /= len(valid_batches) print('epoch %i, minibatch %i/%i, validation error %f %%' % \ (epoch, minibatch_index+1, n_minibatches, \ this_validation_loss*100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold : patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_score = 0. for x,y in test_batches: test_score += test_model(x,y) test_score /= len(test_batches) print((' epoch %i, minibatch %i/%i, test error of best ' 'model %f %%') % (epoch, minibatch_index+1, n_minibatches, test_score*100.)) if patience <= iter : break end_time = time.clock() print('Optimization complete.') print('Best validation score of %f %% obtained at iteration %i,'\ 'with test performance %f %%' % (best_validation_loss * 100., best_iter, test_score*100.)) print('The code ran for %f minutes' % ((end_time-start_time)/60.)) return (best_validation_loss * 100., test_score*100., (end_time-start_time)/60., best_iter) if __name__ == '__main__': evaluate_lenet5() def experiment(state, channel): print 'start experiment' (best_validation_loss, test_score, minutes_trained, iter) = evaluate_lenet5(state.learning_rate, state.n_iter, state.batch_size, state.n_kern0, state.n_kern1, state.n_layer, state.filter_shape0, state.filter_shape1) print 'end experiment' state.best_validation_loss = best_validation_loss state.test_score = test_score state.minutes_trained = minutes_trained state.iter = iter return channel.COMPLETE