Mercurial > ift6266
view transformations/pipeline.py @ 39:17caecc92544
affine transformation using PIL
author | Razvan Pascanu <r.pascanu@gmail.com> |
---|---|
date | Tue, 02 Feb 2010 21:17:11 -0500 |
parents | f6b6c74bb82f |
children | fdb0e0870fb4 |
line wrap: on
line source
from __future__ import with_statement import sys, os import numpy import filetensor as ft import random BATCH_SIZE = 100 #import <modules> and stuff them in mods below mods = [] # DANGER: HIGH VOLTAGE -- DO NOT EDIT BELOW THIS LINE # ----------------------------------------------------------- outf = sys.argv[1] paramsf = sys.argv[2] dataf = '/data/lisa/data/nist/by_class/all/all_train_data.ft' if len(sys.argv) >= 4: dataf = sys.argv[3] train_data = open(dataf, 'rb') dim = tuple(ft._read_header(train_data)[3]) res_data = numpy.empty(dim, dtype=numpy.int8) all_settings = ['complexity'] for mod in mods: all_settings += mod.get_settings_names() params = numpy.empty(((dim[0]/BATCH_SIZE)+1, len(all_settings))) for i in xrange(0, dim[0], BATCH_SIZE): train_data.seek(0) imgs = ft.read(train_data, slice(i, i+BATCH_SIZE)).astype(numpy.float32)/255 complexity = random.random() p = i/BATCH_SIZE j = 1 for mod in mods: par = mod.regenerate_parameters(complexity) params[p, j:j+len(par)] = par j += len(par) for k in range(imgs.shape[0]): c = imgs[k].reshape((32, 32)) for mod in mods: c = mod.transform_image(c) res_data[i+k] = c.reshape((1024,))*255 with open(outf, 'wb') as f: ft.write(f, res_data) numpy.save(paramsf, params)