Mercurial > ift6266
view pycaptcha/Captcha/Visual/Distortions.py @ 138:128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
author | Owner <salahmeister@gmail.com> |
---|---|
date | Sun, 21 Feb 2010 17:30:38 -0600 |
parents | 4775b4195b4b |
children |
line wrap: on
line source
""" Captcha.Visual.Distortions Distortion layers for visual CAPTCHAs """ # # PyCAPTCHA Package # Copyright (C) 2004 Micah Dowty <micah@navi.cx> # from Captcha.Visual import Layer import ImageDraw, Image import random, math class WigglyBlocks(Layer): """Randomly select and shift blocks of the image""" def __init__(self, blockSize=3, sigma=0.01, iterations=300): self.blockSize = blockSize self.sigma = sigma self.iterations = iterations self.seed = random.random() def render(self, image): r = random.Random(self.seed) for i in xrange(self.iterations): # Select a block bx = int(r.uniform(0, image.size[0]-self.blockSize)) by = int(r.uniform(0, image.size[1]-self.blockSize)) block = image.crop((bx, by, bx+self.blockSize-1, by+self.blockSize-1)) # Figure out how much to move it. # The call to floor() is important so we always round toward # 0 rather than to -inf. Just int() would bias the block motion. mx = int(math.floor(r.normalvariate(0, self.sigma))) my = int(math.floor(r.normalvariate(0, self.sigma))) # Now actually move the block image.paste(block, (bx+mx, by+my)) class WarpBase(Layer): """Abstract base class for image warping. Subclasses define a function that maps points in the output image to points in the input image. This warping engine runs a grid of points through this transform and uses PIL's mesh transform to warp the image. """ filtering = Image.BILINEAR resolution = 10 def getTransform(self, image): """Return a transformation function, subclasses should override this""" return lambda x, y: (x, y) def render(self, image): r = self.resolution xPoints = image.size[0] / r + 2 yPoints = image.size[1] / r + 2 f = self.getTransform(image) # Create a list of arrays with transformed points xRows = [] yRows = [] for j in xrange(yPoints): xRow = [] yRow = [] for i in xrange(xPoints): x, y = f(i*r, j*r) # Clamp the edges so we don't get black undefined areas x = max(0, min(image.size[0]-1, x)) y = max(0, min(image.size[1]-1, y)) xRow.append(x) yRow.append(y) xRows.append(xRow) yRows.append(yRow) # Create the mesh list, with a transformation for # each square between points on the grid mesh = [] for j in xrange(yPoints-1): for i in xrange(xPoints-1): mesh.append(( # Destination rectangle (i*r, j*r, (i+1)*r, (j+1)*r), # Source quadrilateral (xRows[j ][i ], yRows[j ][i ], xRows[j+1][i ], yRows[j+1][i ], xRows[j+1][i+1], yRows[j+1][i+1], xRows[j ][i+1], yRows[j ][i+1]), )) return image.transform(image.size, Image.MESH, mesh, self.filtering) class SineWarp(WarpBase): """Warp the image using a random composition of sine waves""" def __init__(self, amplitudeRange = (3, 6.5), periodRange = (0.04, 0.1), ): self.amplitude = random.uniform(*amplitudeRange) self.period = random.uniform(*periodRange) self.offset = (random.uniform(0, math.pi * 2 / self.period), random.uniform(0, math.pi * 2 / self.period)) def getTransform(self, image): return (lambda x, y, a = self.amplitude, p = self.period, o = self.offset: (math.sin( (y+o[0])*p )*a + x, math.sin( (x+o[1])*p )*a + y)) ### The End ###