Mercurial > ift6266
diff deep/stacked_dae/v_sylvain/sgd_optimization.py @ 305:fe5d428c2acc
Ajout de commentaires ainsi que correction de bug pour sauvegarder les parametres
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Wed, 31 Mar 2010 21:00:59 -0400 |
parents | 1cc535f3e254 |
children | a5abd5c8b4b0 |
line wrap: on
line diff
--- a/deep/stacked_dae/v_sylvain/sgd_optimization.py Wed Mar 31 16:06:55 2010 -0400 +++ b/deep/stacked_dae/v_sylvain/sgd_optimization.py Wed Mar 31 21:00:59 2010 -0400 @@ -88,7 +88,7 @@ print "STARTING PRETRAINING, time = ", datetime.datetime.now() sys.stdout.flush() - un_fichier=int(819200.0/self.hp.minibatch_size) #Number of batches in a P07 batch + un_fichier=int(819200.0/self.hp.minibatch_size) #Number of batches in a P07 file start_time = time.clock() ## Pre-train layer-wise @@ -198,6 +198,7 @@ total_mb_index = 0 minibatch_index = -1 + parameters_finetune=[] while (epoch < num_finetune) and (not done_looping): epoch = epoch + 1 @@ -214,8 +215,8 @@ if (total_mb_index+1) % validation_frequency == 0: #minibatch_index += 1 - #The validation set is always NIST - if ind_test == 0: + #The validation set is always NIST (we want the model to be good on NIST) + if ind_test == 0 | ind_test == 20: iter=dataset_test.valid(minibatch_size) else: iter = dataset.valid(minibatch_size) @@ -227,8 +228,8 @@ self.series["validation_error"].\ append((epoch, minibatch_index), this_validation_loss*100.) - print('epoch %i, minibatch %i, validation error on %s : %f %%' % \ - (epoch, minibatch_index+1,nom_test, \ + print('epoch %i, minibatch %i, validation error on NIST : %f %%' % \ + (epoch, minibatch_index+1, \ this_validation_loss*100.)) @@ -240,9 +241,10 @@ improvement_threshold : patience = max(patience, total_mb_index * patience_increase) - # save best validation score and iteration number + # save best validation score, iteration number and parameters best_validation_loss = this_validation_loss best_iter = total_mb_index + parameters_finetune=[copy(x.value) for x in self.classifier.params] # test it on the test set iter = dataset.test(minibatch_size) @@ -273,7 +275,7 @@ if patience <= total_mb_index: done_looping = True - break + break #to exit the FOR loop sys.stdout.flush() @@ -284,7 +286,7 @@ self.series['params'].append((epoch,), self.classifier.all_params) if done_looping == True: #To exit completly the fine-tuning - break + break #to exit the WHILE loop end_time = time.clock() self.hp.update({'finetuning_time':end_time-start_time,\ @@ -299,34 +301,32 @@ print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.)) + sys.stdout.flush() + #Save a copy of the parameters in a file to be able to get them in the future if special == 1: #To keep a track of the value of the parameters - parameters_finetune=[copy(x.value) for x in self.classifier.params] f = open('params_finetune_stanford.txt', 'w') pickle.dump(parameters_finetune,f) f.close() elif ind_test== 0: #To keep a track of the value of the parameters - parameters_finetune=[copy(x.value) for x in self.classifier.params] f = open('params_finetune_P07.txt', 'w') pickle.dump(parameters_finetune,f) f.close() elif ind_test== 1: #For the run with 2 finetunes. It will be faster. - parameters_finetune=[copy(x.value) for x in self.classifier.params] f = open('params_finetune_NIST.txt', 'w') pickle.dump(parameters_finetune,f) f.close() elif ind_test== 20: #To keep a track of the value of the parameters - parameters_finetune=[copy(x.value) for x in self.classifier.params] f = open('params_finetune_NIST_then_P07.txt', 'w') pickle.dump(parameters_finetune,f) f.close() - #Set parameters like they where right after pre-train + #Set parameters like they where right after pre-train or finetune def reload_parameters(self,which): #self.parameters_pre=pickle.load('params_pretrain.txt')