Mercurial > ift6266
diff code_tutoriel/logistic_sgd.py @ 0:fda5f787baa6
commit initial
author | Dumitru Erhan <dumitru.erhan@gmail.com> |
---|---|
date | Thu, 21 Jan 2010 11:26:43 -0500 |
parents | |
children | bcc87d3e33a3 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/code_tutoriel/logistic_sgd.py Thu Jan 21 11:26:43 2010 -0500 @@ -0,0 +1,303 @@ +""" +This tutorial introduces logistic regression using Theano and stochastic +gradient descent. + +Logistic regression is a probabilistic, linear classifier. It is parametrized +by a weight matrix :math:`W` and a bias vector :math:`b`. Classification is +done by projecting data points onto a set of hyperplanes, the distance to +which is used to determine a class membership probability. + +Mathematically, this can be written as: + +.. math:: + P(Y=i|x, W,b) &= softmax_i(W x + b) \\ + &= \frac {e^{W_i x + b_i}} {\sum_j e^{W_j x + b_j}} + + +The output of the model or prediction is then done by taking the argmax of +the vector whose i'th element is P(Y=i|x). + +.. math:: + + y_{pred} = argmax_i P(Y=i|x,W,b) + + +This tutorial presents a stochastic gradient descent optimization method +suitable for large datasets, and a conjugate gradient optimization method +that is suitable for smaller datasets. + + +References: + + - textbooks: "Pattern Recognition and Machine Learning" - + Christopher M. Bishop, section 4.3.2 + + +""" +__docformat__ = 'restructedtext en' + + +import numpy, cPickle, gzip + +import time + +import theano +import theano.tensor as T + +import theano.tensor.nnet + + +class LogisticRegression(object): + """Multi-class Logistic Regression Class + + The logistic regression is fully described by a weight matrix :math:`W` + and bias vector :math:`b`. Classification is done by projecting data + points onto a set of hyperplanes, the distance to which is used to + determine a class membership probability. + """ + + + + + def __init__(self, input, n_in, n_out): + """ Initialize the parameters of the logistic regression + + :param input: symbolic variable that describes the input of the + architecture (one minibatch) + + :param n_in: number of input units, the dimension of the space in + which the datapoints lie + + :param n_out: number of output units, the dimension of the space in + which the labels lie + + """ + + # initialize with 0 the weights W as a matrix of shape (n_in, n_out) + self.W = theano.shared( value=numpy.zeros((n_in,n_out), + dtype = theano.config.floatX) ) + # initialize the baises b as a vector of n_out 0s + self.b = theano.shared( value=numpy.zeros((n_out,), + dtype = theano.config.floatX) ) + + + # compute vector of class-membership probabilities in symbolic form + self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) + + # compute prediction as class whose probability is maximal in + # symbolic form + self.y_pred=T.argmax(self.p_y_given_x, axis=1) + + + + + + def negative_log_likelihood(self, y): + """Return the mean of the negative log-likelihood of the prediction + of this model under a given target distribution. + + .. math:: + + \frac{1}{|\mathcal{D}|} \mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = + \frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ + \ell (\theta=\{W,b\}, \mathcal{D}) + + + :param y: corresponds to a vector that gives for each example the + :correct label + + Note: we use the mean instead of the sum so that + the learning rate is less dependent on the batch size + """ + return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) + + + + + + def errors(self, y): + """Return a float representing the number of errors in the minibatch + over the total number of examples of the minibatch ; zero one + loss over the size of the minibatch + """ + + # check if y has same dimension of y_pred + if y.ndim != self.y_pred.ndim: + raise TypeError('y should have the same shape as self.y_pred', + ('y', target.type, 'y_pred', self.y_pred.type)) + # check if y is of the correct datatype + if y.dtype.startswith('int'): + # the T.neq operator returns a vector of 0s and 1s, where 1 + # represents a mistake in prediction + return T.mean(T.neq(self.y_pred, y)) + else: + raise NotImplementedError() + + + + + +def sgd_optimization_mnist( learning_rate=0.01, n_iter=100): + """ + Demonstrate stochastic gradient descent optimization of a log-linear + model + + This is demonstrated on MNIST. + + :param learning_rate: learning rate used (factor for the stochastic + gradient + + :param n_iter: number of iterations ot run the optimizer + + """ + + # Load the dataset + f = gzip.open('mnist.pkl.gz','rb') + train_set, valid_set, test_set = cPickle.load(f) + f.close() + + # make minibatches of size 20 + batch_size = 20 # sized of the minibatch + + # Dealing with the training set + # get the list of training images (x) and their labels (y) + (train_set_x, train_set_y) = train_set + # initialize the list of training minibatches with empty list + train_batches = [] + for i in xrange(0, len(train_set_x), batch_size): + # add to the list of minibatches the minibatch starting at + # position i, ending at position i+batch_size + # a minibatch is a pair ; the first element of the pair is a list + # of datapoints, the second element is the list of corresponding + # labels + train_batches = train_batches + \ + [(train_set_x[i:i+batch_size], train_set_y[i:i+batch_size])] + + # Dealing with the validation set + (valid_set_x, valid_set_y) = valid_set + # initialize the list of validation minibatches + valid_batches = [] + for i in xrange(0, len(valid_set_x), batch_size): + valid_batches = valid_batches + \ + [(valid_set_x[i:i+batch_size], valid_set_y[i:i+batch_size])] + + # Dealing with the testing set + (test_set_x, test_set_y) = test_set + # initialize the list of testing minibatches + test_batches = [] + for i in xrange(0, len(test_set_x), batch_size): + test_batches = test_batches + \ + [(test_set_x[i:i+batch_size], test_set_y[i:i+batch_size])] + + + ishape = (28,28) # this is the size of MNIST images + + # allocate symbolic variables for the data + x = T.fmatrix() # the data is presented as rasterized images + y = T.lvector() # the labels are presented as 1D vector of + # [long int] labels + + # construct the logistic regression class + classifier = LogisticRegression( \ + input=x.reshape((batch_size,28*28)), n_in=28*28, n_out=10) + + # the cost we minimize during training is the negative log likelihood of + # the model in symbolic format + cost = classifier.negative_log_likelihood(y) + + # compiling a Theano function that computes the mistakes that are made by + # the model on a minibatch + test_model = theano.function([x,y], classifier.errors(y)) + + # compute the gradient of cost with respect to theta = (W,b) + g_W = T.grad(cost, classifier.W) + g_b = T.grad(cost, classifier.b) + + # specify how to update the parameters of the model as a dictionary + updates ={classifier.W: classifier.W - learning_rate*g_W,\ + classifier.b: classifier.b - learning_rate*g_b} + + # compiling a Theano function `train_model` that returns the cost, but in + # the same time updates the parameter of the model based on the rules + # defined in `updates` + train_model = theano.function([x, y], cost, updates = updates ) + + n_minibatches = len(train_batches) # number of minibatchers + + # early-stopping parameters + patience = 5000 # look as this many examples regardless + patience_increase = 2 # wait this much longer when a new best is + # found + improvement_threshold = 0.995 # a relative improvement of this much is + # considered significant + validation_frequency = n_minibatches # go through this many + # minibatche before checking the network + # on the validation set; in this case we + # check every epoch + + best_params = None + best_validation_loss = float('inf') + test_score = 0. + start_time = time.clock() + # have a maximum of `n_iter` iterations through the entire dataset + for iter in xrange(n_iter* n_minibatches): + + # get epoch and minibatch index + epoch = iter / n_minibatches + minibatch_index = iter % n_minibatches + + # get the minibatches corresponding to `iter` modulo + # `len(train_batches)` + x,y = train_batches[ minibatch_index ] + cost_ij = train_model(x,y) + + if (iter+1) % validation_frequency == 0: + # compute zero-one loss on validation set + this_validation_loss = 0. + for x,y in valid_batches: + # sum up the errors for each minibatch + this_validation_loss += test_model(x,y) + # get the average by dividing with the number of minibatches + this_validation_loss /= len(valid_batches) + + print('epoch %i, minibatch %i/%i, validation error %f %%' % \ + (epoch, minibatch_index+1,n_minibatches, \ + this_validation_loss*100.)) + + + # if we got the best validation score until now + if this_validation_loss < best_validation_loss: + #improve patience if loss improvement is good enough + if this_validation_loss < best_validation_loss * \ + improvement_threshold : + patience = max(patience, iter * patience_increase) + + best_validation_loss = this_validation_loss + # test it on the test set + + test_score = 0. + for x,y in test_batches: + test_score += test_model(x,y) + test_score /= len(test_batches) + print((' epoch %i, minibatch %i/%i, test error of best ' + 'model %f %%') % \ + (epoch, minibatch_index+1, n_minibatches,test_score*100.)) + + if patience <= iter : + break + + end_time = time.clock() + print(('Optimization complete with best validation score of %f %%,' + 'with test performance %f %%') % + (best_validation_loss * 100., test_score*100.)) + print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) + + + + + + + +if __name__ == '__main__': + sgd_optimization_mnist() +