Mercurial > ift6266
diff transformations/pipeline.py @ 48:fabf910467b2
Ajouté des hooks pour visualisation à différentes étapes. On peut dumper la grille d'images pour chaque image transformée ou visualiser live avec pylab.imshow() (pas encore essayé cette façon... j'ai un problème avec GIMP+python sur mon laptop).
author | fsavard |
---|---|
date | Thu, 04 Feb 2010 13:39:46 -0500 |
parents | fdb0e0870fb4 |
children | ff59670cd1f9 |
line wrap: on
line diff
--- a/transformations/pipeline.py Thu Feb 04 10:32:07 2010 -0500 +++ b/transformations/pipeline.py Thu Feb 04 13:39:46 2010 -0500 @@ -3,35 +3,71 @@ from __future__ import with_statement +# This is intended to be run as a GIMP script +from gimpfu import * + import sys, os, getopt import numpy import filetensor as ft import random -# This is intended to be run as a GIMP script -from gimpfu import * +# To debug locally, also call with -s 1 (to stop after 1 batch ~= 100) +# (otherwise we allocate all needed memory, might be loonnng and/or crash +# if, lucky like me, you have an age-old laptop creaking from everywhere) +DEBUG = True +DEBUG_X = False # Debug under X (pylab.show()) -DEBUG = True +DEBUG_IMAGES_PATH = None +if DEBUG: + # UNTESTED YET + # To avoid loading NIST if you don't have it handy + # (use with debug_images_iterator(), see main()) + # To use NIST, leave as = None + DEBUG_IMAGES_PATH = None#'/home/francois/Desktop/debug_images' + +# Directory where to dump images to visualize results +# (create it, otherwise it'll crash) +DEBUG_OUTPUT_DIR = 'debug_out' + BATCH_SIZE = 100 DEFAULT_NIST_PATH = '/data/lisa/data/nist/by_class/all/all_train_data.ft' ARGS_FILE = os.environ['PIPELINE_ARGS_TMPFILE'] -if DEBUG: +if DEBUG_X: import pylab pylab.ion() #from add_background_image import AddBackground #from affine_transform import AffineTransformation -#from PoivreSel import PoivreSel +from PoivreSel import PoivreSel from thick import Thick #from BruitGauss import BruitGauss #from gimp_script import GIMPTransformation #from Rature import Rature -#from contrast Contrast +from contrast import Contrast from local_elastic_distortions import LocalElasticDistorter from slant import Slant -MODULE_INSTANCES = [Thick(), LocalElasticDistorter(), Slant()] +if DEBUG: + from visualizer import Visualizer + # Either put the visualizer as in the MODULES_INSTANCES list + # after each module you want to visualize, or in the + # AFTER_EACH_MODULE_HOOK list (but not both, it's redundant) + VISUALIZER = Visualizer(to_dir=DEBUG_OUTPUT_DIR, on_screen=False) + +MODULE_INSTANCES = [Thick(), LocalElasticDistorter(), PoivreSel(), Contrast()] + +# These should have a "after_transform_callback(self, image)" method +# (called after each call to transform_image in a module) +AFTER_EACH_MODULE_HOOK = [] +if DEBUG: + AFTER_EACH_MODULE_HOOK = [VISUALIZER] + +# These should have a "end_transform_callback(self, final_image" method +# (called after all modules have been called) +END_TRANSFORM_HOOK = [] +if DEBUG: + END_TRANSFORM_HOOK = [VISUALIZER] class Pipeline(): def __init__(self, modules, num_batches, batch_size, image_size=(32,32)): @@ -62,8 +98,13 @@ def run(self, batch_iterator, complexity_iterator): img_size = self.image_size + should_hook_after_each = len(AFTER_EACH_MODULE_HOOK) != 0 + should_hook_at_the_end = len(END_TRANSFORM_HOOK) != 0 + for batch_no, batch in enumerate(batch_iterator): complexity = complexity_iterator.next() + if DEBUG: + print "Complexity:", complexity assert len(batch) == self.batch_size @@ -83,11 +124,17 @@ img = mod.transform_image(img) + if should_hook_after_each: + for hook in AFTER_EACH_MODULE_HOOK: + hook.after_transform_callback(img) + self.res_data[global_idx] = \ img.reshape((img_size[0] * img_size[1],))*255 - pylab.imshow(img) - pylab.draw() + + if should_hook_at_the_end: + for hook in END_TRANSFORM_HOOK: + hook.end_transform_callback(img) def write_output(self, output_file_path, params_output_file_path): with open(output_file_path, 'wb') as f: @@ -116,6 +163,27 @@ # DATA ITERATORS # They can be used to interleave different data sources etc. +''' +# Following code (DebugImages and iterator) is untested + +def load_image(filepath): + _RGB_TO_GRAYSCALE = [0.3, 0.59, 0.11, 0.0] + img = Image.open(filepath) + img = numpy.asarray(img) + if len(img.shape) > 2: + img = (img * _RGB_TO_GRAYSCALE).sum(axis=2) + return (img / 255.0).astype('float') + +class DebugImages(): + def __init__(self, images_dir_path): + import glob, os.path + self.filelist = glob.glob(os.path.join(images_dir_path, "*.png")) + +def debug_images_iterator(debug_images): + for path in debug_images.filelist: + yield load_image(path) +''' + class NistData(): def __init__(self, ): nist_path = DEFAULT_NIST_PATH @@ -151,13 +219,16 @@ # Might be called locally or through dbidispatch. In all cases it should be # passed to the GIMP executable to be able to use GIMP filters. # Ex: -def main(): +def _main(): max_complexity = 0.5 # default probability_zero = 0.1 # default output_file_path = None params_output_file_path = None stop_after = None + import sys + print "python version: ", sys.version + try: opts, args = getopt.getopt(get_argv(), "m:z:o:p:s:", ["max-complexity=", "probability-zero=", "output-file=", "params-output-file=", "stop-after="]) except getopt.GetoptError, err: @@ -189,20 +260,32 @@ usage() sys.exit(2) - nist = NistData() - num_batches = nist.dim[0]/BATCH_SIZE - if stop_after: - num_batches = stop_after - pl = Pipeline(modules=MODULE_INSTANCES, num_batches=num_batches, batch_size=BATCH_SIZE, image_size=(32,32)) + if DEBUG_IMAGES_PATH: + ''' + # This code is yet untested + debug_images = DebugImages(DEBUG_IMAGES_PATH) + num_batches = 1 + batch_size = len(debug_images.filelist) + pl = Pipeline(modules=MODULE_INSTANCES, num_batches=num_batches, batch_size=BATCH_SIZE, image_size=(32,32)) + batch_it = debug_images_iterator(debug_images) + ''' + else: + nist = NistData() + num_batches = nist.dim[0]/BATCH_SIZE + if stop_after: + num_batches = stop_after + pl = Pipeline(modules=MODULE_INSTANCES, num_batches=num_batches, batch_size=BATCH_SIZE, image_size=(32,32)) + batch_it = just_nist_iterator(nist, BATCH_SIZE, stop_after) + cpx_it = range_complexity_iterator(probability_zero, max_complexity) - batch_it = just_nist_iterator(nist, BATCH_SIZE, stop_after) - pl.run(batch_it, cpx_it) pl.write_output(output_file_path, params_output_file_path) -main() +_main() + +if DEBUG_X: + pylab.ioff() + pylab.show() pdb.gimp_quit(0) -pylab.ioff() -pylab.show()