diff transformations/filetensor.py @ 10:faacc76d21c2

Basic new pipeline script for the images tranforms (includes bonus patched filetensor module from pylearn.io)
author Arnaud Bergeron <abergeron@gmail.com>
date Wed, 27 Jan 2010 17:35:37 -0500
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/transformations/filetensor.py	Wed Jan 27 17:35:37 2010 -0500
@@ -0,0 +1,232 @@
+"""
+Read and write the matrix file format described at
+U{http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/index.html}
+
+The format is for dense tensors:
+
+    - magic number indicating type and endianness - 4bytes
+    - rank of tensor - int32
+    - dimensions - int32, int32, int32, ...
+    - <data>
+
+The number of dimensions and rank is slightly tricky: 
+    - for scalar: rank=0, dimensions = [1, 1, 1]
+    - for vector: rank=1, dimensions = [?, 1, 1]
+    - for matrix: rank=2, dimensions = [?, ?, 1]
+
+For rank >= 3, the number of dimensions matches the rank exactly.
+
+
+@todo: add complex type support
+
+"""
+import sys
+import numpy
+
+def _prod(lst):
+    p = 1
+    for l in lst:
+        p *= l
+    return p
+
+_magic_dtype = {
+        0x1E3D4C51 : ('float32', 4),
+        #0x1E3D4C52 : ('packed matrix', 0), #what is a packed matrix?
+        0x1E3D4C53 : ('float64', 8),
+        0x1E3D4C54 : ('int32', 4),
+        0x1E3D4C55 : ('uint8', 1),
+        0x1E3D4C56 : ('int16', 2),
+        }
+_dtype_magic = {
+        'float32': 0x1E3D4C51,
+        #'packed matrix': 0x1E3D4C52,
+        'float64': 0x1E3D4C53,
+        'int32': 0x1E3D4C54,
+        'uint8': 0x1E3D4C55,
+        'int16': 0x1E3D4C56
+        }
+
+def _read_int32(f):
+    """unpack a 4-byte integer from the current position in file f"""
+    s = f.read(4)
+    s_array = numpy.fromstring(s, dtype='int32')
+    return s_array.item()
+
+def _read_header(f, debug=False):
+    """
+    :returns: data type, element size, rank, shape, size
+    """
+    #what is the data type of this matrix?
+    #magic_s = f.read(4)
+    #magic = numpy.fromstring(magic_s, dtype='int32')
+    magic = _read_int32(f)
+    magic_t, elsize = _magic_dtype[magic]
+    if debug: 
+        print 'header magic', magic, magic_t, elsize
+    if magic_t == 'packed matrix':
+        raise NotImplementedError('packed matrix not supported')
+
+    #what is the rank of the tensor?
+    ndim = _read_int32(f)
+    if debug: print 'header ndim', ndim
+
+    #what are the dimensions of the tensor?
+    dim = numpy.fromfile(f, dtype='int32', count=max(ndim,3))[:ndim]
+    dim_size = _prod(dim)
+    if debug: print 'header dim', dim, dim_size
+
+    return magic_t, elsize, ndim, dim, dim_size
+
+class arraylike(object):
+    """Provide an array-like interface to the filetensor in f.
+
+    The rank parameter to __init__ controls how this object interprets the underlying tensor.
+    Its behaviour should be clear from the following example.
+    Suppose the underlying tensor is MxNxK.
+
+    - If rank is 0, self[i] will be a scalar and len(self) == M*N*K.
+
+    - If rank is 1, self[i] is a vector of length K, and len(self) == M*N.
+
+    - If rank is 3, self[i] is a 3D tensor of size MxNxK, and len(self)==1.
+
+    - If rank is 5, self[i] is a 5D tensor of size 1x1xMxNxK, and len(self) == 1.
+
+
+    :note: Objects of this class generally require exclusive use of the underlying file handle, because
+    they call seek() every time you access an element.
+    """
+
+    f = None 
+    """File-like object"""
+
+    magic_t = None
+    """numpy data type of array"""
+
+    elsize = None
+    """number of bytes per scalar element"""
+
+    ndim = None
+    """Rank of underlying tensor"""
+
+    dim = None
+    """tuple of array dimensions (aka shape)"""
+
+    dim_size = None
+    """number of scalars in the tensor (prod of dim)"""
+
+    f_start = None
+    """The file position of the first element of the tensor"""
+
+    readshape = None
+    """tuple of array dimensions of the block that we read"""
+
+    readsize = None
+    """number of elements we must read for each block"""
+    
+    def __init__(self, f, rank=0, debug=False):
+        self.f = f
+        self.magic_t, self.elsize, self.ndim, self.dim, self.dim_size = _read_header(f,debug)
+        self.f_start = f.tell()
+
+        if rank <= self.ndim:
+          self.readshape = tuple(self.dim[self.ndim-rank:])
+        else:
+          self.readshape = tuple(self.dim)
+
+        #self.readshape = tuple(self.dim[self.ndim-rank:]) if rank <= self.ndim else tuple(self.dim)
+
+        if rank <= self.ndim:
+          padding = tuple()
+        else:
+          padding = (1,) * (rank - self.ndim)
+
+        #padding = tuple() if rank <= self.ndim else (1,) * (rank - self.ndim)
+        self.returnshape = padding + self.readshape
+        self.readsize = _prod(self.readshape)
+        if debug: print 'READ PARAM', self.readshape, self.returnshape, self.readsize
+
+    def __len__(self):
+        return _prod(self.dim[:self.ndim-len(self.readshape)])
+
+    def __getitem__(self, idx):
+        if idx >= len(self):
+            raise IndexError(idx)
+        self.f.seek(self.f_start + idx * self.elsize * self.readsize)
+        return numpy.fromfile(self.f, 
+                dtype=self.magic_t, 
+                count=self.readsize).reshape(self.returnshape)
+
+
+#
+# TODO: implement item selection:
+#  e.g. load('some mat', subtensor=(:6, 2:5))
+#
+#  This function should be memory efficient by:
+#  - allocating an output matrix at the beginning
+#  - seeking through the file, reading subtensors from multiple places
+def read(f, subtensor=None, debug=False):
+    """Load all or part of file 'f' into a numpy ndarray
+
+    @param f: file from which to read
+    @type f: file-like object
+
+    If subtensor is not None, it should be like the argument to
+    numpy.ndarray.__getitem__.  The following two expressions should return
+    equivalent ndarray objects, but the one on the left may be faster and more
+    memory efficient if the underlying file f is big.
+
+        read(f, subtensor) <===> read(f)[*subtensor]
+    
+    Support for subtensors is currently spotty, so check the code to see if your
+    particular type of subtensor is supported.
+
+    """
+    magic_t, elsize, ndim, dim, dim_size = _read_header(f,debug)
+    f_start = f.tell()
+
+    rval = None
+    if subtensor is None:
+        rval = numpy.fromfile(f, dtype=magic_t, count=_prod(dim)).reshape(dim)
+    elif isinstance(subtensor, slice):
+        if subtensor.step not in (None, 1):
+            raise NotImplementedError('slice with step', subtensor.step)
+        if subtensor.start not in (None, 0):
+            bytes_per_row = _prod(dim[1:]) * elsize
+            f.seek(f_start + subtensor.start * bytes_per_row)
+        dim[0] = min(dim[0], subtensor.stop) - subtensor.start
+        rval = numpy.fromfile(f, dtype=magic_t, count=_prod(dim)).reshape(dim)
+    else:
+        raise NotImplementedError('subtensor access not written yet:', subtensor) 
+
+    return rval
+
+def write(f, mat):
+    """Write a numpy.ndarray to file.
+
+    @param f: file into which to write
+    @type f: file-like object
+
+    @param mat: array to write to file
+    @type mat: numpy ndarray or compatible
+
+    """
+    def _write_int32(f, i):
+        i_array = numpy.asarray(i, dtype='int32')
+        if 0: print 'writing int32', i, i_array
+        i_array.tofile(f)
+
+    try:
+        _write_int32(f, _dtype_magic[str(mat.dtype)])
+    except KeyError:
+        raise TypeError('Invalid ndarray dtype for filetensor format', mat.dtype)
+
+    _write_int32(f, len(mat.shape))
+    shape = mat.shape
+    if len(shape) < 3:
+        shape = list(shape) + [1] * (3 - len(shape))
+    if 0: print 'writing shape =', shape
+    for sh in shape:
+        _write_int32(f, sh)
+    mat.tofile(f)
+