Mercurial > ift6266
diff transformations/affine_transform.py @ 45:f8a92292b299
merge de 4 fevrier
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Thu, 04 Feb 2010 10:27:58 -0500 |
parents | 17caecc92544 |
children | 81b9567ec4ae |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/transformations/affine_transform.py Thu Feb 04 10:27:58 2010 -0500 @@ -0,0 +1,69 @@ +#!/usr/bin/python +# coding: utf-8 + +''' +Simple implementation of random affine transformations based on the Python +Imaging Module affine transformations. + + +Author: Razvan Pascanu +''' + +import numpy, Image + + + +class AffineTransformation(): + def __init__( self, shape = (32,32), seed = None): + self.shape = shape + self.rng = numpy.random.RandomState(seed) + + def transform(self,NIST_image): + + im = Image.fromarray( \ + numpy.asarray(\ + NIST_image.reshape(self.shape), dtype='uint8')) + # generate random affine transformation + # a point (x',y') of the new image corresponds to (x,y) of the old + # image where : + # x' = params[0]*x + params[1]*y + params[2] + # y' = params[3]*x + params[4]*y _ params[5] + + # the ranges are set manually as to look acceptable + params = self.rng.uniform(size = 6) -.5 + params[2] *= 8. + params[5] *= 8. + params[0] = 1. + params[0]*0.4 + params[3] = 0. + params[3]*0.4 + params[1] = 0 + params[1]*0.4 + params[4] = 1 + params[4]*0.4 + + print params + nwim = im.transform( (32,32), Image.AFFINE, params) + return numpy.asarray(nwim) + + + +if __name__ =='__main__': + print 'random test' + + from pylearn.io import filetensor as ft + import pylab + + datapath = '/data/lisa/data/nist/by_class/' + + f = open(datapath+'digits/digits_train_data.ft') + d = ft.read(f) + f.close() + + + transformer = AffineTransformation() + id = numpy.random.randint(30) + + pylab.figure() + pylab.imshow(d[id].reshape((32,32))) + pylab.figure() + pylab.imshow(transformer.transform(d[id]).reshape((32,32))) + + pylab.show() +