Mercurial > ift6266
diff transformations/add_background_image.py @ 83:f75f5acad4eb
Changed behavior of add_background in order to have a contrast generation parameter and doing the max without using a treshold mask
author | Xavier Glorot <glorotxa@iro.umontreal.ca> |
---|---|
date | Wed, 10 Feb 2010 17:37:00 -0500 |
parents | 53ee1097c02c |
children | 8aadb0f59a64 |
line wrap: on
line diff
--- a/transformations/add_background_image.py Wed Feb 10 15:09:24 2010 -0500 +++ b/transformations/add_background_image.py Wed Feb 10 17:37:00 2010 -0500 @@ -12,10 +12,10 @@ import Image, numpy class AddBackground(): - def __init__(self, threshold = 128): + def __init__(self, threshold = 128, complexity = 1): self.h = 32 self.w = 32 - self.threshold = threshold; + self.threshold = 1; try: #in order to load locally if it is available self.bg_image_file = '/Tmp/image_net/' f=open(self.bg_image_file+'filelist.pkl') @@ -24,15 +24,18 @@ f=open(self.bg_image_file+'filelist.pkl') self.image_files = cPickle.load(f) f.close() - + self.regenerate_parameters(complexity) + + def get_current_parameters(self): + return [self.contrast] # get threshold value def get_settings_names(self): - return [str(self.threshold)] - + return ['contrast'] + # no need, except for testmod.py def regenerate_parameters(self, complexity): - value = random.gauss(0, 0.5*complexity) - return [value] + self.contrast = 1-numpy.random.rand()*complexity + return [self.contrast] # load an image def load_image(self,filename): @@ -57,16 +60,18 @@ return image[x:x + self.w, y:y + self.h] # select a random background image from "bg_image_file" and crops it - def rand_bg_image(self): + def rand_bg_image(self,maximage): i = random.randint(0, len(self.image_files) - 1) image = self.load_image(self.bg_image_file + self.image_files[i]) self.bg_image = self.rand_crop(image) + maxbg = self.bg_image.max() + self.bg_image = self.bg_image / maxbg * ( max(maximage - self.contrast/2.0,0.1) ) # set "bg_image" as background to "image", based on a pixels threshold def set_bg(self,image): - b = (image < self.threshold / 255.0).astype(numpy.float32) - return b * self.bg_image + ( 1 - b) * image + tensor = numpy.asarray([self.bg_image,image],dtype='float32') + return tensor.max(0) # transform an image file and return an array def transform_image_from_file(self, filename): @@ -77,7 +82,7 @@ # standard array to array transform def transform_image(self, image): - self.rand_bg_image() + self.rand_bg_image(image.max()) image = self.set_bg(image) return image