diff scripts/setup_batches.py @ 272:f6d9b6b89c2a

ajouté : module de préparation de batches en fonction d'un ratio de classes
author Guillaume Sicard <guitch21@gmail.com>
date Mon, 22 Mar 2010 08:34:48 -0400
parents
children a6b6b1140de9
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/scripts/setup_batches.py	Mon Mar 22 08:34:48 2010 -0400
@@ -0,0 +1,176 @@
+# -*- coding: utf-8 -*-
+
+import random
+from pylearn.io import filetensor as ft
+
+class Batches():
+  def __init__(self):
+    data_path = '/data/lisa/data/nist/by_class/'
+
+    digits_train_data = 'digits/digits_train_data.ft'
+    digits_train_labels = 'digits/digits_train_labels.ft'
+    digits_test_data = 'digits/digits_test_data.ft'
+    digits_test_labels = 'digits/digits_test_labels.ft'
+
+    lower_train_data = 'lower/lower_train_data.ft'
+    lower_train_labels = 'lower/lower_train_labels.ft'
+    #upper_train_data = 'upper/upper_train_data.ft'
+    #upper_train_labels = 'upper/upper_train_labels.ft'
+
+    f_digits_train_data = open(data_path + digits_train_data)
+    f_digits_train_labels = open(data_path + digits_train_labels)
+    f_digits_test_data = open(data_path + digits_test_data)
+    f_digits_test_labels = open(data_path + digits_test_labels)
+
+    f_lower_train_data = open(data_path + lower_train_data)
+    f_lower_train_labels = open(data_path + lower_train_labels)
+    #f_upper_train_data = open(data_path + upper_train_data)
+    #f_upper_train_labels = open(data_path + upper_train_labels)
+
+    self.raw_digits_train_data = ft.read(f_digits_train_data)
+    self.raw_digits_train_labels = ft.read(f_digits_train_labels)
+    self.raw_digits_test_data = ft.read(f_digits_test_data)
+    self.raw_digits_test_labels = ft.read(f_digits_test_labels)
+
+    self.raw_lower_train_data = ft.read(f_lower_train_data)
+    self.raw_lower_train_labels = ft.read(f_lower_train_labels)
+    #self.raw_upper_train_data = ft.read(f_upper_train_data)
+    #self.raw_upper_train_labels = ft.read(f_upper_train_labels)
+
+    f_digits_train_data.close()
+    f_digits_train_labels.close()
+    f_digits_test_data.close()
+    f_digits_test_labels.close()
+
+    f_lower_train_data.close()
+    f_lower_train_labels.close()
+    #f_upper_train_data.close()
+    #f_upper_train_labels.close()
+
+  def set_batches(self, start_ratio = -1, end_ratio = -1, batch_size = 20, verbose = False):
+    self.batch_size = batch_size
+
+    digits_train_size = len(self.raw_digits_train_labels)
+    digits_test_size = len(self.raw_digits_test_labels)
+
+    lower_train_size = len(self.raw_lower_train_labels)
+    #upper_train_size = len(self.raw_upper_train_labels)
+
+    if verbose == True:
+      print 'digits_train_size = %d' %digits_train_size
+      print 'digits_test_size = %d' %digits_test_size
+      print 'lower_train_size = %d' %lower_train_size
+      #print 'upper_train_size = %d' %upper_train_size
+
+    # define main and other datasets
+    raw_main_train_data = self.raw_digits_train_data
+    raw_other_train_data = self.raw_lower_train_labels
+    raw_test_data = self.raw_digits_test_labels
+
+    raw_main_train_labels = self.raw_digits_train_labels
+    raw_other_train_labels = self.raw_lower_train_labels
+    raw_test_labels = self.raw_digits_test_labels
+
+    main_train_size = len(raw_main_train_data)
+    other_train_size = len(raw_other_train_data)
+    test_size = len(raw_test_data)
+    test_size = int(test_size/batch_size)
+    test_size *= batch_size
+    validation_size = test_size 
+
+    # default ratio is actual ratio
+    if start_ratio == -1:
+      self.start_ratio = float(main_train_size) / float(main_train_size + other_train_size)
+    else:
+      self.start_ratio = start_ratio
+
+    if start_ratio == -1:
+      self.end_ratio = float(main_train_size) / float(main_train_size + other_train_size)
+    else:
+      self.end_ratio = end_ratio
+
+    if verbose == True:
+      print 'start_ratio = %f' %self.start_ratio
+      print 'end_ratio = %f' %self.end_ratio
+
+    i_main = 0
+    i_other = 0
+    i_batch = 0
+
+    # compute the number of batches given start and end ratios
+    n_main_batch = (main_train_size - batch_size * (self.end_ratio - self.start_ratio) / 2 ) / (batch_size * (self.start_ratio + (self.end_ratio - self.start_ratio) / 2))
+    n_other_batch = (other_train_size - batch_size * (self.end_ratio - self.start_ratio) / 2 ) / (batch_size - batch_size * (self.start_ratio + (self.end_ratio - self.start_ratio) / 2))
+    n_batches = min([n_main_batch, n_other_batch])
+
+    # train batches
+    self.train_batches = []
+
+    # as long as we have data left in main and other, we create batches
+    while i_main < main_train_size - batch_size - test_size  and i_other < other_train_size - batch_size:
+
+      ratio = self.start_ratio + i_batch * (self.end_ratio - self.start_ratio) / n_batches
+      batch_data = []
+      batch_labels = []
+
+      for i in xrange(0, self.batch_size): # randomly choose between main and other, given the current ratio
+	rnd = random.randint(0, 100)
+
+	if rnd < 100 * ratio:
+	  batch_data = batch_data + \
+		[raw_main_train_data[i_main]]
+	  batch_labels = batch_labels + \
+		[raw_main_train_labels[i_main]]
+	  i_main += 1
+	else:
+	  batch_data = batch_data + \
+		[raw_other_train_data[i_other]]
+	  batch_labels = batch_labels + \
+		[raw_other_train_labels[i_other]]
+	  i_other += 1
+
+      self.train_batches = self.train_batches + \
+	      [(batch_data,batch_labels)]
+      i_batch += 1
+
+    offset = i_main
+
+    if verbose == True:
+      print 'n_main = %d' %i_main
+      print 'n_other = %d' %i_other
+      print 'nb_train_batches = %d / %d' %(i_batch,n_batches)
+      print 'offset = %d' %offset
+
+    # test batches
+    self.test_batches = []
+    for i in xrange(0, test_size, batch_size):
+        self.test_batches = self.test_batches + \
+            [(raw_test_data[i:i+batch_size], raw_test_labels[i:i+batch_size])]
+
+    # validation batches
+    self.validation_batches = []
+    for i in xrange(0, test_size, batch_size):
+        self.validation_batches = self.validation_batches + \
+            [(raw_main_train_data[offset+i:offset+i+batch_size], raw_main_train_labels[offset+i:offset+i+batch_size])]
+
+  def get_train_batches(self):
+    return self.train_batches
+
+  def get_test_batches(self):
+    return self.test_batches
+
+  def get_validation_batches(self):
+    return self.validation_batches
+
+  def test_set_batches(self, intervall = 1000):
+    for i in xrange(0, len(self.train_batches) - self.batch_size, intervall):
+	n_main = 0
+
+	for j in xrange(0, self.batch_size):
+	  if self.train_batches[i][1][j] < 10:
+	    n_main +=1
+	print 'ratio batch %d : %f' %(i,float(n_main) / float(self.batch_size))
+
+if __name__ == '__main__':
+    batches = Batches()
+    batches.set_batches(0.5,1, 20, True)
+    batches.test_set_batches()