Mercurial > ift6266
diff deep/crbm/utils.py @ 360:f37c0705649d
Problèmes de révisions hg... tentative de merger
author | fsavard |
---|---|
date | Thu, 22 Apr 2010 10:34:26 -0400 |
parents | |
children | 64fa85d68923 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/deep/crbm/utils.py Thu Apr 22 10:34:26 2010 -0400 @@ -0,0 +1,118 @@ +#!/usr/bin/python +# coding: utf-8 + +from __future__ import with_statement + +import jobman +from jobman import DD + +from pylearn.io.seriestables import * +import tables + + + +# from pylearn codebase +# useful in __init__(param1, param2, etc.) to save +# values in self.param1, self.param2... just call +# update_locals(self, locals()) +def update_locals(obj, dct): + if 'self' in dct: + del dct['self'] + obj.__dict__.update(dct) + +# from a dictionary of possible values for hyperparameters, e.g. +# hp_values = {'learning_rate':[0.1, 0.01], 'num_layers': [1,2]} +# create a list of other dictionaries representing all the possible +# combinations, thus in this example creating: +# [{'learning_rate': 0.1, 'num_layers': 1}, ...] +# (similarly for combinations (0.1, 2), (0.01, 1), (0.01, 2)) +def produit_cartesien_jobs(val_dict): + job_list = [DD()] + all_keys = val_dict.keys() + + for key in all_keys: + possible_values = val_dict[key] + new_job_list = [] + for val in possible_values: + for job in job_list: + to_insert = job.copy() + to_insert.update({key: val}) + new_job_list.append(to_insert) + job_list = new_job_list + + return job_list + +def jobs_from_reinsert_list(cols, job_vals): + job_list = [] + for vals in job_vals: + job = DD() + for i, col in enumerate(cols): + job[col] = vals[i] + job_list.append(job) + + return job_list + +def save_params(all_params, filename): + import pickle + with open(filename, 'wb') as f: + values = [p.value for p in all_params] + + # -1 for HIGHEST_PROTOCOL + pickle.dump(values, f, -1) + +# Perform insertion into the Postgre DB based on combination +# of hyperparameter values above +# (see comment for produit_cartesien_jobs() to know how it works) +def jobman_insert_job_vals(job_db, experiment_path, job_vals): + jobs = produit_cartesien_jobs(job_vals) + + db = jobman.sql.db(job_db) + for job in jobs: + job.update({jobman.sql.EXPERIMENT: experiment_path}) + jobman.sql.insert_dict(job, db) + +def jobman_insert_specific_jobs(job_db, experiment_path, + insert_cols, insert_vals): + jobs = jobs_from_reinsert_list(insert_cols, insert_vals) + + db = jobman.sql.db(job_db) + for job in jobs: + job.update({jobman.sql.EXPERIMENT: experiment_path}) + jobman.sql.insert_dict(job, db) + +# Just a shortcut for a common case where we need a few +# related Error (float) series +def get_accumulator_series_array( \ + hdf5_file, group_name, series_names, + reduce_every, + index_names=('epoch','minibatch'), + stdout_too=True, + skip_hdf5_append=False): + all_series = [] + + new_group = hdf5_file.createGroup('/', group_name) + + other_targets = [] + if stdout_too: + other_targets = [StdoutAppendTarget()] + + for sn in series_names: + series_base = \ + ErrorSeries(error_name=sn, + table_name=sn, + hdf5_file=hdf5_file, + hdf5_group=new_group._v_pathname, + index_names=index_names, + other_targets=other_targets, + skip_hdf5_append=skip_hdf5_append) + + all_series.append( \ + AccumulatorSeriesWrapper( \ + base_series=series_base, + reduce_every=reduce_every)) + + ret_wrapper = SeriesArrayWrapper(all_series) + + return ret_wrapper + +