Mercurial > ift6266
diff baseline/mlp/v_youssouf/mlp_nist.py @ 413:f2dd75248483
initial commit of mlp with options for detection and 36 classes
author | youssouf |
---|---|
date | Thu, 29 Apr 2010 16:51:03 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/baseline/mlp/v_youssouf/mlp_nist.py Thu Apr 29 16:51:03 2010 -0400 @@ -0,0 +1,588 @@ +""" +This tutorial introduces the multilayer perceptron using Theano. + + A multilayer perceptron is a logistic regressor where +instead of feeding the input to the logistic regression you insert a +intermidiate layer, called the hidden layer, that has a nonlinear +activation function (usually tanh or sigmoid) . One can use many such +hidden layers making the architecture deep. The tutorial will also tackle +the problem of MNIST digit classification. + +.. math:: + + f(x) = G( b^{(2)} + W^{(2)}( s( b^{(1)} + W^{(1)} x))), + +References: + + - textbooks: "Pattern Recognition and Machine Learning" - + Christopher M. Bishop, section 5 + +TODO: recommended preprocessing, lr ranges, regularization ranges (explain + to do lr first, then add regularization) + +""" +__docformat__ = 'restructedtext en' + +import pdb +import numpy +import pylab +import theano +import theano.tensor as T +import time +import theano.tensor.nnet +import pylearn +import theano,pylearn.version,ift6266 +from pylearn.io import filetensor as ft +from ift6266 import datasets + +data_path = '/data/lisa/data/nist/by_class/' + +class MLP(object): + """Multi-Layer Perceptron Class + + A multilayer perceptron is a feedforward artificial neural network model + that has one layer or more of hidden units and nonlinear activations. + Intermidiate layers usually have as activation function thanh or the + sigmoid function while the top layer is a softamx layer. + """ + + + + def __init__(self, input, n_in, n_hidden, n_out,learning_rate, detection_mode=0): + """Initialize the parameters for the multilayer perceptron + + :param input: symbolic variable that describes the input of the + architecture (one minibatch) + + :param n_in: number of input units, the dimension of the space in + which the datapoints lie + + :param n_hidden: number of hidden units + + :param n_out: number of output units, the dimension of the space in + which the labels lie + + """ + + # initialize the parameters theta = (W1,b1,W2,b2) ; note that this + # example contains only one hidden layer, but one can have as many + # layers as he/she wishes, making the network deeper. The only + # problem making the network deep this way is during learning, + # backpropagation being unable to move the network from the starting + # point towards; this is where pre-training helps, giving a good + # starting point for backpropagation, but more about this in the + # other tutorials + + # `W1` is initialized with `W1_values` which is uniformely sampled + # from -6./sqrt(n_in+n_hidden) and 6./sqrt(n_in+n_hidden) + # the output of uniform if converted using asarray to dtype + # theano.config.floatX so that the code is runable on GPU + W1_values = numpy.asarray( numpy.random.uniform( \ + low = -numpy.sqrt(6./(n_in+n_hidden)), \ + high = numpy.sqrt(6./(n_in+n_hidden)), \ + size = (n_in, n_hidden)), dtype = theano.config.floatX) + # `W2` is initialized with `W2_values` which is uniformely sampled + # from -6./sqrt(n_hidden+n_out) and 6./sqrt(n_hidden+n_out) + # the output of uniform if converted using asarray to dtype + # theano.config.floatX so that the code is runable on GPU + W2_values = numpy.asarray( numpy.random.uniform( + low = -numpy.sqrt(6./(n_hidden+n_out)), \ + high= numpy.sqrt(6./(n_hidden+n_out)),\ + size= (n_hidden, n_out)), dtype = theano.config.floatX) + + self.W1 = theano.shared( value = W1_values ) + self.b1 = theano.shared( value = numpy.zeros((n_hidden,), + dtype= theano.config.floatX)) + self.W2 = theano.shared( value = W2_values ) + self.b2 = theano.shared( value = numpy.zeros((n_out,), + dtype= theano.config.floatX)) + + #include the learning rate in the classifer so + #we can modify it on the fly when we want + lr_value=learning_rate + self.lr=theano.shared(value=lr_value) + # symbolic expression computing the values of the hidden layer + self.hidden = T.tanh(T.dot(input, self.W1)+ self.b1) + + + + # symbolic expression computing the values of the top layer + if(detection_mode): + self.p_y_given_x= T.nnet.sigmoid(T.dot(self.hidden, self.W2)+self.b2) + else: + self.p_y_given_x= T.nnet.softmax(T.dot(self.hidden, self.W2)+self.b2) + + # compute prediction as class whose probability is maximal in + # symbolic form + self.y_pred = T.argmax( self.p_y_given_x, axis =1) + self.y_pred_num = T.argmax( self.p_y_given_x[0:9], axis =1) + + + + + # L1 norm ; one regularization option is to enforce L1 norm to + # be small + self.L1 = abs(self.W1).sum() + abs(self.W2).sum() + + # square of L2 norm ; one regularization option is to enforce + # square of L2 norm to be small + self.L2_sqr = (self.W1**2).sum() + (self.W2**2).sum() + + + + def negative_log_likelihood(self, y): + """Return the mean of the negative log-likelihood of the prediction + of this model under a given target distribution. + + .. math:: + + \frac{1}{|\mathcal{D}|}\mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = + \frac{1}{|\mathcal{D}|}\sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ + \ell (\theta=\{W,b\}, \mathcal{D}) + + + :param y: corresponds to a vector that gives for each example the + :correct label + """ + return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) + + + def cross_entropy(self, y): + return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]+T.sum(T.log(1-self.p_y_given_x), axis=1)-T.log(1-self.p_y_given_x)[T.arange(y.shape[0]),y]) + + def errors(self, y): + """Return a float representing the number of errors in the minibatch + over the total number of examples of the minibatch + """ + + # check if y has same dimension of y_pred + if y.ndim != self.y_pred.ndim: + raise TypeError('y should have the same shape as self.y_pred', + ('y', target.type, 'y_pred', self.y_pred.type)) + # check if y is of the correct datatype + if y.dtype.startswith('int'): + # the T.neq operator returns a vector of 0s and 1s, where 1 + # represents a mistake in prediction + return T.mean(T.neq(self.y_pred, y)) + else: + raise NotImplementedError() + + +def mlp_full_nist( verbose = 1,\ + adaptive_lr = 0,\ + data_set=0,\ + learning_rate=0.01,\ + L1_reg = 0.00,\ + L2_reg = 0.0001,\ + nb_max_exemples=1000000,\ + batch_size=20,\ + nb_hidden = 30,\ + nb_targets = 62, + tau=1e6,\ + lr_t2_factor=0.5,\ + detection_mode = 0,\ + reduce_label = 0): + + + configuration = [learning_rate,nb_max_exemples,nb_hidden,adaptive_lr, detection_mode, reduce_label] + + if(verbose): + print(('verbose: %i') % (verbose)) + print(('adaptive_lr: %i') % (adaptive_lr)) + print(('data_set: %i') % (data_set)) + print(('learning_rate: %f') % (learning_rate)) + print(('L1_reg: %f') % (L1_reg)) + print(('L2_reg: %f') % (L2_reg)) + print(('nb_max_exemples: %i') % (nb_max_exemples)) + print(('batch_size: %i') % (batch_size)) + print(('nb_hidden: %i') % (nb_hidden)) + print(('nb_targets: %f') % (nb_targets)) + print(('tau: %f') % (tau)) + print(('lr_t2_factor: %f') % (lr_t2_factor)) + print(('detection_mode: %i') % (detection_mode)) + print(('reduce_label: %i') % (reduce_label)) + + # define the number of output - reduce_label : merge the lower and upper case. i.e a and A will both have label 10 + if(reduce_label): + nb_targets = 36 + else: + nb_targets = 62 + + #save initial learning rate if classical adaptive lr is used + initial_lr=learning_rate + + total_validation_error_list = [] + total_train_error_list = [] + learning_rate_list=[] + best_training_error=float('inf'); + + if data_set==0: + dataset=datasets.nist_all() + + + + + ishape = (32,32) # this is the size of NIST images + + # allocate symbolic variables for the data + x = T.fmatrix() # the data is presented as rasterized images + y = T.lvector() # the labels are presented as 1D vector of + # [long int] labels + + + # construct the logistic regression class + classifier = MLP( input=x,\ + n_in=32*32,\ + n_hidden=nb_hidden,\ + n_out=nb_targets, + learning_rate=learning_rate, + detection_mode = detection_mode) + + + + + # the cost we minimize during training is the negative log likelihood of + # the model plus the regularization terms (L1 and L2); cost is expressed + # here symbolically + if(detection_mode): + cost = classifier.cross_entropy(y) \ + + L1_reg * classifier.L1 \ + + L2_reg * classifier.L2_sqr + else: + cost = classifier.negative_log_likelihood(y) \ + + L1_reg * classifier.L1 \ + + L2_reg * classifier.L2_sqr + + # compiling a theano function that computes the mistakes that are made by + # the model on a minibatch + test_model = theano.function([x,y], classifier.errors(y)) + + # compute the gradient of cost with respect to theta = (W1, b1, W2, b2) + g_W1 = T.grad(cost, classifier.W1) + g_b1 = T.grad(cost, classifier.b1) + g_W2 = T.grad(cost, classifier.W2) + g_b2 = T.grad(cost, classifier.b2) + + # specify how to update the parameters of the model as a dictionary + updates = \ + { classifier.W1: classifier.W1 - classifier.lr*g_W1 \ + , classifier.b1: classifier.b1 - classifier.lr*g_b1 \ + , classifier.W2: classifier.W2 - classifier.lr*g_W2 \ + , classifier.b2: classifier.b2 - classifier.lr*g_b2 } + + # compiling a theano function `train_model` that returns the cost, but in + # the same time updates the parameter of the model based on the rules + # defined in `updates` + train_model = theano.function([x, y], cost, updates = updates ) + + + + + + + + + + #conditions for stopping the adaptation: + #1) we have reached nb_max_exemples (this is rounded up to be a multiple of the train size) + #2) validation error is going up twice in a row(probable overfitting) + + # This means we no longer stop on slow convergence as low learning rates stopped + # too fast. + + #approximate number of samples in the training set + #this is just to have a validation frequency + #roughly proportionnal to the training set + n_minibatches = 650000/batch_size + + + patience =nb_max_exemples/batch_size #in units of minibatch + patience_increase = 2 # wait this much longer when a new best is + # found + improvement_threshold = 0.995 # a relative improvement of this much is + # considered significant + validation_frequency = n_minibatches/4 + + + + + + best_validation_loss = float('inf') + best_iter = 0 + test_score = 0. + start_time = time.clock() + time_n=0 #in unit of exemples + minibatch_index=0 + epoch=0 + temp=0 + + + + if verbose == 1: + print 'looking at most at %i exemples' %nb_max_exemples + while(minibatch_index*batch_size<nb_max_exemples): + + for x, y in dataset.train(batch_size): + + if reduce_label: + y[y > 35] = y[y > 35]-26 + minibatch_index = minibatch_index + 1 + if adaptive_lr==2: + classifier.lr.value = tau*initial_lr/(tau+time_n) + + + #train model + cost_ij = train_model(x,y) + + if (minibatch_index+1) % validation_frequency == 0: + + #save the current learning rate + learning_rate_list.append(classifier.lr.value) + + # compute the validation error + this_validation_loss = 0. + temp=0 + for xv,yv in dataset.valid(1): + if reduce_label: + yv[yv > 35] = yv[yv > 35]-26 + # sum up the errors for each minibatch + axxa=test_model(xv,yv) + this_validation_loss += axxa + temp=temp+1 + # get the average by dividing with the number of minibatches + this_validation_loss /= temp + #save the validation loss + total_validation_error_list.append(this_validation_loss) + if verbose == 1: + print(('epoch %i, minibatch %i, learning rate %f current validation error %f ') % + (epoch, minibatch_index+1,classifier.lr.value, + this_validation_loss*100.)) + + # if we got the best validation score until now + if this_validation_loss < best_validation_loss: + # save best validation score and iteration number + best_validation_loss = this_validation_loss + best_iter = minibatch_index + # reset patience if we are going down again + # so we continue exploring + patience=nb_max_exemples/batch_size + # test it on the test set + test_score = 0. + temp =0 + for xt,yt in dataset.test(batch_size): + if reduce_label: + yt[yt > 35] = yt[yt > 35]-26 + test_score += test_model(xt,yt) + temp = temp+1 + test_score /= temp + if verbose == 1: + print(('epoch %i, minibatch %i, test error of best ' + 'model %f %%') % + (epoch, minibatch_index+1, + test_score*100.)) + + # if the validation error is going up, we are overfitting (or oscillating) + # stop converging but run at least to next validation + # to check overfitting or ocsillation + # the saved weights of the model will be a bit off in that case + elif this_validation_loss >= best_validation_loss: + #calculate the test error at this point and exit + # test it on the test set + # however, if adaptive_lr is true, try reducing the lr to + # get us out of an oscilliation + if adaptive_lr==1: + classifier.lr.value=classifier.lr.value*lr_t2_factor + + test_score = 0. + #cap the patience so we are allowed one more validation error + #calculation before aborting + patience = minibatch_index+validation_frequency+1 + temp=0 + for xt,yt in dataset.test(batch_size): + if reduce_label: + yt[yt > 35] = yt[yt > 35]-26 + + test_score += test_model(xt,yt) + temp=temp+1 + test_score /= temp + if verbose == 1: + print ' validation error is going up, possibly stopping soon' + print((' epoch %i, minibatch %i, test error of best ' + 'model %f %%') % + (epoch, minibatch_index+1, + test_score*100.)) + + + + + if minibatch_index>patience: + print 'we have diverged' + break + + + time_n= time_n + batch_size + epoch = epoch+1 + end_time = time.clock() + if verbose == 1: + print(('Optimization complete. Best validation score of %f %% ' + 'obtained at iteration %i, with test performance %f %%') % + (best_validation_loss * 100., best_iter, test_score*100.)) + print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) + print minibatch_index + + #save the model and the weights + numpy.savez('model.npy', config=configuration, W1=classifier.W1.value,W2=classifier.W2.value, b1=classifier.b1.value,b2=classifier.b2.value) + numpy.savez('results.npy',config=configuration,total_train_error_list=total_train_error_list,total_validation_error_list=total_validation_error_list,\ + learning_rate_list=learning_rate_list) + + return (best_training_error*100.0,best_validation_loss * 100.,test_score*100.,best_iter*batch_size,(end_time-start_time)/60) + +def test_error(model_file): + + print((' test error on all NIST')) + # load the model + a=numpy.load(model_file) + W1=a['W1'] + W2=a['W2'] + b1=a['b1'] + b2=a['b2'] + configuration=a['config'] + #configuration = [learning_rate,nb_max_exemples,nb_hidden,adaptive_lr] + learning_rate = configuration[0] + nb_max_exemples = configuration[1] + nb_hidden = configuration[2] + adaptive_lr = configuration[3] + + if(len(configuration) == 6): + detection_mode = configuration[4] + reduce_label = configuration[5] + else: + detection_mode = 0 + reduce_label = 0 + + # define the batch size + batch_size=20 + #define the nb of target + nb_targets = 62 + + # create the mlp + ishape = (32,32) # this is the size of NIST images + + # allocate symbolic variables for the data + x = T.fmatrix() # the data is presented as rasterized images + y = T.lvector() # the labels are presented as 1D vector of + # [long int] labels + + + # construct the logistic regression class + classifier = MLP( input=x,\ + n_in=32*32,\ + n_hidden=nb_hidden,\ + n_out=nb_targets, + learning_rate=learning_rate,\ + detection_mode=detection_mode) + + + # set the weight into the model + classifier.W1.value = W1 + classifier.b1.value = b1 + classifier.W2.value = W2 + classifier.b2.value = b2 + + + # compiling a theano function that computes the mistakes that are made by + # the model on a minibatch + test_model = theano.function([x,y], classifier.errors(y)) + + # test it on the test set + + # load NIST ALL + dataset=datasets.nist_all() + test_score = 0. + temp =0 + for xt,yt in dataset.test(batch_size): + if reduce_label: + yt[yt > 35] = yt[yt > 35]-26 + test_score += test_model(xt,yt) + temp = temp+1 + test_score /= temp + + print(( ' test error NIST ALL : %f %%') %(test_score*100.0)) + + # load NIST DIGITS + dataset=datasets.nist_digits() + test_score = 0. + temp =0 + for xt,yt in dataset.test(batch_size): + if reduce_label: + yt[yt > 35] = yt[yt > 35]-26 + test_score += test_model(xt,yt) + temp = temp+1 + test_score /= temp + + print(( ' test error NIST digits : %f %%') %(test_score*100.0)) + + # load NIST lower + dataset=datasets.nist_lower() + test_score = 0. + temp =0 + for xt,yt in dataset.test(batch_size): + if reduce_label: + yt[yt > 35] = yt[yt > 35]-26 + test_score += test_model(xt,yt) + temp = temp+1 + test_score /= temp + + print(( ' test error NIST lower : %f %%') %(test_score*100.0)) + + # load NIST upper + dataset=datasets.nist_upper() + test_score = 0. + temp =0 + for xt,yt in dataset.test(batch_size): + if reduce_label: + yt[yt > 35] = yt[yt > 35]-26 + test_score += test_model(xt,yt) + temp = temp+1 + test_score /= temp + + print(( ' test error NIST upper : %f %%') %(test_score*100.0)) + + +if __name__ == '__main__': + ''' + mlp_full_nist( verbose = 1,\ + adaptive_lr = 1,\ + data_set=0,\ + learning_rate=0.5,\ + L1_reg = 0.00,\ + L2_reg = 0.0001,\ + nb_max_exemples=10000000,\ + batch_size=20,\ + nb_hidden = 500,\ + nb_targets = 62, + tau=100000,\ + lr_t2_factor=0.5) + ''' + + test_error('model.npy.npz') + +def jobman_mlp_full_nist(state,channel): + (train_error,validation_error,test_error,nb_exemples,time)=mlp_full_nist(learning_rate=state.learning_rate,\ + nb_max_exemples=state.nb_max_exemples,\ + nb_hidden=state.nb_hidden,\ + adaptive_lr=state.adaptive_lr,\ + tau=state.tau,\ + verbose = state.verbose,\ + lr_t2_factor=state.lr_t2_factor,\ + detection_mode = state.detection_mode,\ + reduce_label = state.reduce_label) + state.train_error=train_error + state.validation_error=validation_error + state.test_error=test_error + state.nb_exemples=nb_exemples + state.time=time + pylearn.version.record_versions(state,[theano,ift6266,pylearn]) + return channel.COMPLETE + +