Mercurial > ift6266
diff transformations/thick.py @ 11:dbc806d025a2
Added a thick.py script defining a Thick class transforming randomly the thickness of the characters
author | Xavier Glorot <glorotxa@iro.umontreal.ca> |
---|---|
date | Wed, 27 Jan 2010 19:14:37 -0500 |
parents | |
children | a25474d4d34f |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/transformations/thick.py Wed Jan 27 19:14:37 2010 -0500 @@ -0,0 +1,176 @@ +#!/usr/bin/python +# coding: utf-8 + +''' +Simple implementation of random thickness deformation using morphological +operation of scipy. +Only one morphological operation applied (dilation or erosion), the kernel is random +out of a list of 11 symmetric kernels. + +Author: Xavier Glorot + +Usage: +''' + +import scipy.ndimage.morphology +import numpy as N + + +class Thick(): + def __init__(self,complexity = 1): + #---------- private attributes + self.__nx__ = 32 + self.__ny__ = 32 + self.__erodemax__ = 4 + self.__dilatemax__ = 11 + self.__structuring_elements__ = [N.asarray([[1,1]]),N.asarray([[1],[1]]),\ + N.asarray([[1,1],[1,1]]),N.asarray([[0,1,0],[1,1,1],[0,1,0]]),\ + N.asarray([[1,1,1],[1,1,1]]),N.asarray([[1,1],[1,1],[1,1]]),\ + N.asarray([[1,1,1],[1,1,1],[1,1,1]]),\ + N.asarray([[1,1,1,1],[1,1,1,1],[1,1,1,1]]),\ + N.asarray([[1,1,1],[1,1,1],[1,1,1],[1,1,1]]),\ + N.asarray([[0,0,1,0,0],[0,1,1,1,0],[1,1,1,1,1],[0,1,1,1,0],[0,0,1,0,0]]),\ + N.asarray([[1,1,1,1],[1,1,1,1]]),N.asarray([[1,1],[1,1],[1,1],[1,1]])] + #------------------------------------------------ + + #---------- generation parameters + self.erodenb = N.ceil(complexity * self.__erodemax__) + self.dilatenb = N.ceil(complexity * self.__dilatemax__) + self.Perode = self.erodenb / (self.dilatenb + self.erodenb + 1.0) + self.Pdilate = self.dilatenb / (self.dilatenb + self.erodenb + 1.0) + assert (self.Perode + self.Pdilate <= 1) & (self.Perode + self.Pdilate >= 0) + assert (complexity >= 0) & (complexity <= 1) + #------------------------------------------------ + + def _get_current_parameters(self): + return [self.erodenb, self.dilatenb, self.Perode, self.Pdilate] + + def get_settings_names(self): + return ['erodenb','dilatenb','Perode','Pdilate'] + + def regenerate_parameters(self, complexity): + self.erodenb = N.ceil(complexity * self.__erodemax__) + self.dilatenb = N.ceil(complexity * self.__dilatemax__) + self.Perode = self.erodenb / (self.dilatenb + self.erodenb + 1.0) + self.Pdilate = self.dilatenb / (self.dilatenb + self.erodenb + 1.0) + assert (self.Perode + self.Pdilate <= 1) & (self.Perode + self.Pdilate >= 0) + assert (complexity >= 0) & (complexity <= 1) + return self._get_current_parameters() + + def transform_1_image(self,image,genparam_save = None): + P = N.random.uniform() + + if P>1-(self.Pdilate+self.Perode): + maxi = float(N.max(image)) + mini = float(N.min(image)) + + if maxi>1.0: + image=image/maxi + + if P>1-(self.Pdilate+self.Perode)+self.Perode: + nb=N.random.randint(self.dilatenb) + trans=scipy.ndimage.morphology.grey_dilation\ + (image,size=self.__structuring_elements__[nb].shape,structure=self.__structuring_elements__[nb]) + meth = 'dilate' + else: + nb=N.random.randint(self.erodenb) + trans=scipy.ndimage.morphology.grey_erosion\ + (image,size=self.__structuring_elements__[nb].shape,structure=self.__structuring_elements__[nb]) + meth = 'erode' + + #------renormalizing + maxit = N.max(trans) + minit = N.min(trans) + trans= numpy.asarray((trans - (minit+mini)) / (maxit - (minit+mini)) * maxi,dtype=image.dtype) + #-------- + if genparam_save is not None: + genparam_save.update({'Thick':{'meth':meth,'nb':nb}}) + return trans + else: + meth = 'nothing' + nb = 0 + if genparam_save is not None: + genparam_save.update({'Thick':{'meth':meth,'nb':nb}}) + return image + + def transform_image(self,image,genparam_save = None): + if image.ndim == 2: + newimage = N.reshape(image,(image.shape[0],self.__nx__,self.__ny__)) + for i in range(image.shape[0]): + if genparam_save is not None: + newimage[i,:,:] = self.transform_1_image(newimage[i,:,:],genparam_save[i]) + else: + newimage[i,:,:] = self.transform_1_image(newimage[i,:,:]) + return N.reshape(newimage,image.shape) + else: + newimage = N.reshape(image,(self.__nx__,self.__ny__)) + if genparam_save is not None: + newimage = self.transform_1_image(newimage,genparam_save) + else: + newimage = self.transform_1_image(newimage) + return N.reshape(newimage,image.shape) + + + + +#test on NIST (you need pylearn and access to NIST to do that) + +if __name__ == '__main__': + + from pylearn.io import filetensor as ft + import copy, numpy + import pygame + import time + datapath = '/data/lisa/data/nist/by_class/' + f = open(datapath+'digits/digits_train_data.ft') + d = ft.read(f) + + pygame.surfarray.use_arraytype('numpy') + + pygame.display.init() + screen = pygame.display.set_mode((8*2*32,8*32),0,8) + anglcolorpalette=[(x,x,x) for x in xrange(0,256)] + screen.set_palette(anglcolorpalette) + + MyThick = Thick() + + #debut=time.time() + #MyThick.transform_image(d) + #fin=time.time() + #print '------------------------------------------------' + #print d.shape[0],' images transformed in :', fin-debut, ' seconds' + #print '------------------------------------------------' + #print (fin-debut)/d.shape[0]*1000000,' microseconds per image' + #print '------------------------------------------------' + #print MyThick.get_settings_names() + #print MyThick._get_current_parameters() + #print MyThick.regenerate_parameters(0) + #print MyThick.regenerate_parameters(0.5) + #print MyThick.regenerate_parameters(1) + for i in range(10000): + a=d[i,:] + b=N.asarray(N.reshape(a,(32,32))).T + + new=pygame.surfarray.make_surface(b) + new=pygame.transform.scale2x(new) + new=pygame.transform.scale2x(new) + new=pygame.transform.scale2x(new) + new.set_palette(anglcolorpalette) + screen.blit(new,(0,0)) + + dd={} + c=MyThick.transform_image(a,dd) + b=N.asarray(N.reshape(c,(32,32))).T + + new=pygame.surfarray.make_surface(b) + new=pygame.transform.scale2x(new) + new=pygame.transform.scale2x(new) + new=pygame.transform.scale2x(new) + new.set_palette(anglcolorpalette) + screen.blit(new,(8*32,0)) + + pygame.display.update() + print dd + raw_input('Press Enter') + + pygame.display.quit() \ No newline at end of file